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I. INTRODUCTION

The Advanced Transport Operating Systems (ATOPS) program conducted by the
Langley Research Center of the National Aeronautics and Space Administration is a re-
search and development program aimed at developing capabilities for increased termi-
nal area capacity, safe and accurate flight in adverse weather conditions including shear
winds, the avoidance of wake vortices and reduced fuel consumption. Advances in mod-
ern control design techniques and increased capabilities of digital flight computers coupled
with accurate guidance information from the Microwave Landing System (MLS) ‘make the
achievement of some of these goals feasible. The development of the stochastic feedfor-
ward /feedback control design methodology and its application to the design of a digital
automatic landing system for a small transport jet aircraft was performed within the con-
text of the ATOPS program.

The main objective of a control system may be described as to enable the plant to
track a desired trajectory, usually selected out of a given class of trajectories, as closely as
possible in the presence of random and deterministic disturbances and despite uncertainties
about the plant. Thus, a control system generally has a feedforward controller which tries
to track a desired trajectory, and a feedback controller which tries to maintain the plant
state near the desired trajectory in the presence of disturbances and system uncertainties.
It is essential that the feedback law produce a closed-loop system which is stable about
the desired trajectory so that small disturbances can be accommodated while maintaining
the plant state near the desired trajectory once the feedforward control law has brought
the plant state to the desired trajectory.

The part of a control law which uses only the desired or commanded trajectory ex-
plicitly will be referred to as the feedforward control law. On the other hand, the part of a

control law which explicitly uses only measurements of the plant state will be referred to



as the feedback control law. Even though in some cases involving nonlinear control laws
the distinction between the feedforward and feedback control laws may become somewhat
ambiguous, in linear control laws, the distinction is rather straight-forward.

The design of the feedback controller has received considerable attention in the modern
control literature in the last two decades; e.g., see [1] - [5], and the references therein.
On the other hand, the design of the feedforward controller has received relatively little
attention [6] - [10]. In this study, a combined stochastic feedforward and feedback control
design methodology is developed and is applied to the design of a digital automatic landing
system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft.

The feedforward control problem is formulated as a stochastic optimization problem
and is imbedded into a stochastic output feedback problem [11], [12] where the plant
contains unstable and uncontrollable modes. As the standard output feedback algorithm
requires an initial gain which stabilizes the plant, a new algorithm is developed to obtain
the feedforward control gains. The necessary conditions are shown to result in coupled
linear matrix equations, implying that when a solution exists, it is indeed the globally
optimal control gain.

The formulation of the feedforward problem in a stochastic, rather than the standard
deterministic, setting is significant in two ways. First, the class of desired trajectories
from which the actually commanded path is selected can be effectively described as a
random process generated by a dynamical system driven by a white noise process. The
second, and more important, implication of a stochastic optimization formulation is the

tacit understanding that “perfect tracking” is often not possible due to various reasons

nonlinearities and unmatched initial conditions. Thus, questions about the robustness and
sensitivity of the feedforward controller arise naturally in this context.
A combined stochastic feedforward/feedback control methodology is developed where

the main objectives of the feedforward and feedback control laws are clearly seen. Fur-




thermore, the inclusion of error integral feedback, dynamic compensation, rate command
control structure, etc. is an integral element of the methodology. Another advantage
of the methodology is the flexibility that a variety of feedback control design techniques
with arbitrary structures may be employed to obtain the feedback controller; these in-
clude stochastic output feedback, multi-configuration control, decentralized control [13] or
frequency and classical control methods.

Finally, a specific incremental implementation is recommended for the combined feed-
forward /feedback controller. Some advantages of this digital implementation are the sim-
plicity of implementation, the fact that trim values are not needed and that problems
such as integrator wind-up can be largely avoided. The closed-loop eigenvalues using this
implementation are shown to contain the designed closed-loop eigenvalues which would
result if an incremental implementation were not used.

A digital automatic landing system for the ATOPS Research Vehicle (a Boeing 737-
100) is designed using the stochastic feedforward controller and stochastic output feedback.
The system control modes include localizer and glideslope capture, localizer and glideslope
track, crab, decrab and flare. Using the recommended incremental implementation, the
control laws are simulated on a digital computer and interfaced with a nonlinear digital

simulation of the aircraft and its systems.



II. STOCHASTIC FEEDFORWARD/OUTPUT FEEDBACK
CONTROL DESIGN

A control system generally contains a feedforward and a feedback control subsystem.
The feedforward controller tries to track a desired input (or commanded) trajectory, while
the feedback controller tries to maintain the plant state near the desired trajectory despite
the presence of disturbances, random noises and system uncertainties usually by using
error feedback. In the modern control literature, the design of the feedback controller
has received considerable attention, while the design of the feedforward controller and its
relationship to the .feedback controls has received relatively little attention. On the other
hand, classical control techniques have treated the design of both feedback and feedforward
controllers jointly.

In this section, we will formulate the design of a feedforward controller as a stochastic
optimization problem. We will present the solution to this problem for two important
special cases. Then we will present a control design methodology which combines the
feedforward and feedback control designs and addresses various questions which arise in

practical control law design.

A. FEEDFORWARD CONTROL — A STOCHASTIC FORMULATION

In general terms, the objective of a control law is to enable the plant to track a
“desired or commanded trajectory” as closely as possible, in the presence of disturbances
and despite uncertainties about the plant.

In this study, for purposes of discussing terminology, the part of a control law which
uses only the desired trajectory, or the command state, explicitly will be referred to as the
feedforward control law. On fhe other hand, the portion of the control law which explicitly

uses measurements of the plant state will be referred to as the feedback control law. Even




though in some cases it is difficult to separate the feedforward and feedback controllers, in

most linear control laws, the distinction is relatively straight-forward.

Command Model.

Consider the desired trajectory or command model

Zk+1 = Pz 2k + ¢k, (1)

where 2 is a n;-component command state vector; the order, n,, of the command model
is arbitrary, and can be higher or lower than the order of the plant to be controlled. Note
that not all the components of the command state, z;, need correspond to actual physical
quantities such as plant states or measured sensor outputs. Let H, be a n, X n, matrix. We
assume that only the vector H, z; will be directly commanded as the desired trajectory.
For example, in an altitude control law, only the altitude may be commanded as the desired
trajectory; however, the command state vector may be defined with two components (i.e.,
n, = 2) possibly corresponding to commanded altitude and sink rate.

From Eq. (1), it is clear that for an arbitrary command state history {zx, £ > 0}, it
is always possible to determine the “forcing function” (or vector) {¢x, k¥ > 0} such that
the command model Eq. (1) holds. This can simply be achieved by solving for ¢¢. If
the command state history {zx, k > 0} is fixed or completely known a ‘priori’, then a
control sequence which makes the plant track this trajectory can be obtained provided
that the trajectory is realizable [5]. However, this control sequence would be a ﬁxed,' open
loop control sequence corresponding only to that specific trajectory, rather than being a
feedforward control law.

In most applications, we are interested in designing a feedforward control law which
can track any one trajectory selected from a given class of command trajectories, say z(L).
One method of specifying a class of trajectories is to specify a dynamical model driven by

a random process with given statistics.



For example, consider the command model in Eq. (1), where the sequence {¢x, k > 0}
is specified as a vector random sequence with white noise statistics. The class of command
trajectories thus specified would be the family of command state histories {zx, & > 0}
which can be generated by any realization of the random sequence {¢x, £ > 0}. On the
other hand, {¢x, k > 0} may be specified as a random sequence with colored noise statistics.
If ¢x itself can be obtained as the output of a discrete dynamical system driven by white
noise, then the command state may be augmented to obtain a new system of higher order
driven by white noise but still having the form of Eq. (1).

It is clear that a large family of command trajectory classes can be expressed by the
model given in Eq. (1) by appropriate selection of the system order n,, transition matrix
$2z, and the covariance of {¢x, k¥ > 0}. In the remainder of this study, we will assume that
the random sequence {¢x, ¥ > 0} in Eq. (1) has white noise statistics, unless specified

otherwise.

Feedforward Control Optimization.

Consider a linear plant model of the form

ZTep1 = @z Tk + Tuur +Ta 2k + T Gk + wi, (2)

where zj is the n-component plant state vector, ux the r-component control vector, wj the
plant noise process, ¢, the plant state transition matrix and I, the control effectiveness
matrix. The vectors zx and ¢x are the command state vector and the command forcing
vector, respectively.

It should be noted that when the matrices I'; and T'; are selected to be zero, the plant
state z; does not depend on the command trajectory, which is the usual case. However,
it is often desirable to include in the plant model, states which describe the error, or the
deviation from the command value. To accommodate design models of this type, it is of

interest to include the command trajectory terms at this point in the formulation.




Let H, be a n, X n matrix. The objective is to obtain a feedforward control law so that
the plant variables H, z; continuously track the commanded variables H, z; as closely as
possible when {2k, k > 0} belongs to a given class of command trajectories, L.

By its nature, a feedforward control law is intended not to modify the stability, noise
attenuation and robustness properties that are already present in the plant model. These
properties are generally obtained by appropriate design of the feedback control law. For
the purpose of designing the feedforward control law, we will assume that the plant model
already incorporates the feedback control law. Thus, in this section, Eq. (2) represents
the closed-loop plant model where the feedback control law has sa.tisfa.ctérily achieved the
desired closed-loop objectives. In particular, we will assume that the closed-loop system
is stable; i.e., all the eigenvalues of the state transition matrix ¢, lie inside the unit circle.

We will consider feedforward control laws of the form

up = — Kz zp — K¢ ¢k, (3)

where K, and K, are control gains to be selected in order to track the command tra-
jectory as closely as possible. It is important to note that Eq. (3) is one of the simpler
control structures that can be selected. More complex feedforward structures should be
investigated to extend the results obtained in this study.

In order to obtain a set of feedforward gains K,, and K, it is desirable to select a
criterion or objective function which describes the goals to be achieved, and then optimize

this criterion. Since our goal is to track H zx, an obvious selection would be

N
: 1 T
= - z - H. zr —
J = lim 3V 1)Ek=o(szk H,z2)" (Hy zx — H; 1) (4)

While more general yet quadratic objective functions can be selected, some properties
of this expression may be noted. Since only the tracking error is penalized, if a control can

achieve perfect tracking then it will optimize the criterion. Thus, the optimal control will



result in perfect tracking when that is possible with the form of control selected in Eq. (3).
Otherwise, the optimal solution will minimize a quadratic function of the tracking error.
It should be noted that, in this context, perfect tracking implies that almost all command
trajectories in the class £ can be tracked by the plant using the feedforward control law
in Eq. (3).

While the lack of control weighting allows perfect tracking, when possible, it may
also result in more control activity than desired. To accommodate such cases, it is always
possible to include a non-zero control weighting term. However, this inevitably results
in less than perfect tracking; in such cases, it may be a better policy to change (e.g., to
smooth) the commanded trajectory so that tracking it does not require as high a level of
control activity.

In the following, we will use the objective or cost function

1 L (z\T (Qu Q z
J= li — E k 11 12 ) ( k ) 5
N0 2(N +1) kgo (Zk ) (Qzl Q22 2z ()
which does not explicitly contain a control weighting term. The case given in Eq. (4) is

obtained when

Qu = HT H,, Q12 = —HTH,, (6a)

Qa1=—-HITH,, Qi2=HIH,. (6b)

m a1 P S T 1 1 e i LR ] 1 . I et .1
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plant model in Eq. (2) and the command model in Eq. (1), find a feedforward control law
of the form of Eq. (3) which minimizes the cost function J in Eq. (5).
When the plant model is augmented by the command model, the feedforward control

optimization problem posed is seen to be a stochastic output feedback optimization prob-




lem [6] - [8], where the “feedback” vector contains only the command variables z; and ¢x.*
Thus, it would appear that the stochastic feedforward problem can be embedded in the
stochastic output feedback problem. In fact, when the command model transition matrix,
&1, is stable, the output feedback algorithm can be directly used to determine the optimal
feedforward gains K., K.

However, most realistic command models require the use of unstable, in particular
marginally (un)stable, systems. For example, the command model for the usual case of a

constant command would have an eigenvalue of unity.

Zr+1 = 2k + Ok, z, = const. (7
Therefore, for the stochastic feedforward problem, the assumption that the command
system is stable is not a realistic hypothesis, and is of limited use. Since the command
model is not controllable, it is not stabilizable except when it is already stable. Thus,
it is not realistic to assume that the augmented system is output stabilizable. Since the
output feedback algorithm [9], [12], requires a stabilizing gain, it cannot be used to obtain
the optimal feedforward gain. The fact that, in most cases of interest, the command
model is not output stabilizable produces the major difficulty in determining the optimal
feedforward gains.
In overcoming this problem to obtain an optimal feedforward control law, we will
consider two cases. However, first we restate the necessary conditions for the optimal

stochastic infinite-time output feedback problem (4], [9].
P(K)=¢T(K)P(K)$(K) + C" KTRKC +Q (8)

S(K)=¢(K)S¢T(K) + TKVKTCT + W (9)

*Note that ¢; can also be included in the augmented state and, hence, in the “feedback”

vectors, as is shown in Case 2 which is discussed later.




P(K)K§(K) =TT P(K)¢S(K)CT , | (10)
$(K)=¢—-TKC (11)

P(K)=TTP(K)YT+R , S(K)=CSK)CT +V (12)

where P(K) and S(K) represent the discrete cost and state covariance matrices, respec-
tively, when the gain K is used. Q and R are the discrete state and control weighting
matrices, respectively; W and V are the plant and measurement noise covariance matrices,

respectively; C is the output gain matrix, as described in [12], and K is in the stability set

S.
CASE 1. up = —K, z.

The augmented system for this problem can be expressed as

P z T
()= (5 5) () + (B) me (0 =) 09
Yk = Crzp + v = (0 Cz) (:::) + vk ’ (14)

uy=—K,ys =—K,C2x — K, v; (15)

In order to determine necessary conditions for the case considered, we rewrite the
general necessary conditions given in Eqgs. (8) - (12) after partitioning the matrix equations

according to the partition in Eq. (13). This results in the following equations.

P, = ¢£ P, ¢z + Qzz ’ (16)

10




P:u = ¢£ P,y ¢z + ¢£ Pz:(rz o Kz Cx) + sz ’ (17)

Sz =¢28:207 + (Tx —T2 Ky C.) S ¢T + Wow (18)
Six=¢:5a2¢T +War (19)
Ky= P TT(Prz ¢ Sus+ (PouTs+ Pea6:) Saa] CT 850, (20)
where
Ppp=P=rTP,T.+R (21)
Sex=8=C.8..CT+V . (22)

From these equations, it may be noted that the optimal feedforward control gain
matrix, K, does not directly depend on P,; nor S;,. Furthermore, recall that, strictly
speaking, the necessary conditions hold when the closed-loop system is output stabilizable.
For the current problem this requires that ¢, be stable.

It should be noted that when ¢, is unstable, the covariance of the command vector
grows without bounds; so that Eq. (19) does not have a non-negative definite solution,
Szz- On the other hand, Eq. (17) has a finite solution, P.,, under relatively unrestricted

conditions [13]. In particular, if

p(#:) p(¢7) <1, (23)

then a finite P,, satisfies Eq. (17), where p(¢) denotes the spectral radius of the matrix

#. Since ¢ is the closed-loop plant transition matrix, and is assumed to be stable p(47)

11



is strictly less than unity; if necessary, it could be designed to be smaller. On the other
hand, in most cases of interest, a p(¢,) value of unity is sufficient to model the desired
trajectory class.

Similar comments apply to the solution of Eq. (18) since the matrices involved have the
same eigenvalues; i.e., p(¢.) p(#7) is equal to p(¢T) p(¢z). However, the forcing function
in Eq. (18) contains S;,. When S, grows without bounds, so will S;,. However, this
does not necessarily imply that the optimal feedforward gain, K, will also grbw without
bounds.

To investigate the nature of the optimal solution in the limiting case where the out-
put stabilizability condition does not hold, we rewrite Eq. (18) in the following manner.

Assuming that S, is nonsingular, let

Szz = S:u S;l 4 (24)

then S., satisfies the equation

Stz = [¢z Szs + (Ts — Tz K, C)](S2z 6T S + Wo, S1 (25)

Further assuming that ¢, is nonsingular, and manipulating Eq. (20) results in

Sss ¢f S;xl = ¢;1[I - Wxx Sz—;l . (26)

Substituting Eq. (26) into Eq. (25), and manipulating, we find that

™ I AN Y IO In
Lparg\ig) T Wy gy T VWax| @x \4

Now, in many cases of interest, when ¢, approaches an unstable matrix, the covariance
of the command state, S,,, grows without bounds, while S_;! vanishes. In this report, we
will limit attention to cases where the inverse of the covariance of the command state

vanishes, unless stated otherwise. This results in simplifications in Eq. (27) and Eq. (20).
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We will further assume that all the command state components are known without any
error. This is certainly a reasonable assumption, since we cannot command a trajectory

that we do not know; thus, we set the measurement noise covariance, V, to zero; i.e.,

V=0 , and C,=I . (28)

The necessary conditions for optimality for this case can now be expressed as:

Pz =¢l Piz¢zt Qe (29)

Pre=¢T Pexda+ % Pez(Ta — Tz K2) + Qzs (30)
Szabs— ¢z Sz =T~ T K, (31)

Ky=P ' Tl Prs¢2S2s + PezTa+ Prads] (32)

where P, is given by Eq. (21).

It should be noted that P, is independent of the feedforward gain matrix, K, but
depends only on the (closed-loop) plant transition matrix, ¢,, and the weighting matrix,
Qzz. Similarly, the covariance matrix, S;., is also independent of the feedforward gain
matrix, K,. However, S;; has been eliminated from the necessary conditions and does not
explicitly appear in these equations.

It is of interest to note that the solutions of Eq. (30) and Eq. (31), P, and $.., re-
spectively, are linear functions of the feedforward gain, K, as these are standard Lyapunov
equations. Since P.., P,. and ¢ are independent of K, Eq. (32) is also linear in the
gain K,. Thus, obtaining the optimal feedforward gain, K,, does not require the solution

of highly nonlinear matrix equations, but can be obtained by solving a set of coupled but

13



linear equations. An algorithm to solve for the optimal feedforward control gains, K, will

be shown in a later section.
CASE 2. ux = —K(¢k + vk)-

In the preceding case, the feedforward control law was restricted to using only the
command vector, zx. In this section, we will consider the additional use of the command
model forcing function (or vector), ¢k, in the feedforward law. Since ¢x is necessary to
determine the succeeding command vector, 2x,;, it contains lead information and can
play an important part in satisfactorily tracking the desired trajectory.

The augmented system for this problem

ZTk+1 ¢z r.-T: K, rg Tk T, Wzk
Zepe1 | =1 O bs I zg |+ 0 Jup+ | wa , (33)
Sk+1 0 0 0 ¢k 0 Wk
Tk
yk=5‘k+vk=(00I) Zr | +vg . (34)
Sk

Partitioning the necessary conditions given by Eq. (8) — Eq. (12) according to the

partition of Eq. (33), results in the necessary conditions for the problem considered here.

Pz = ¢ Poz bz + Quz (35)

Pre= ¢ Prads+ ¢L Pro(Ts — Tz Ki) + Qus (36)
K, = Pz_zl rf[Pu L+ Pg,] W: [Ws + f’s]—l (37)
P =TTP,.T.+R (38)
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It is important to note that the solutions P;; and P,, to Eq. (35) and Eq. (36),
respectively, are precisely the same as the solutions to Eq. (29) and Eq. (30) in Case 1.
Thus, if P;, and P., are computed when obtaining the optimal gain for the command
vector feedforward, the same matrices can be used in obtaining the optimal gain for the
forcing vector feedforward.

Furthermore, it should be noted that the command forcing vector feedforward gain,
K., given by Eq. (35) - Eq. (38) is optimized for an arbitrary command vector feedforward
gain, K,. In other words, Eq. (35) - Eq. (38) hold for an arbitrary gain, K,, not only for
the optimal K,.

Finally, note the simplicity of the expression for K. Once the weighting matrices have
been appropriately selected, and the feedback gains have been obtained so that satisfactory
feedback characteristics are achieved, it is possible to compute K on-line using the current
values of the closed-loop plant transition matrix, ¢., and the control effectiveness matrix,
I'z. Thus, the simplicity of the necessary conditions for the optimal K make it usable as a
feedforward gain-scheduled controller. Similar comments apply to the optimal feedforward
gain, K,, for the command vector. However, in the latter case, the necessary conditions,
although linear, are not as simple and easily computed as for K.

It is of interest to consider the case where the command forcing vector is known with
no error (i.e., V; = 0), so that ¢x can be fed forward without noise. In this case, Eq. (37)

becomes

K, =P 'TT(P,, T + P,,] ) (39)

Thus, the optimal K, when ¢; is perfectly known at the kt* sampling instant is
independent of the covariance, W, of ¢x. From an alternate point of view, the gain K, can
be decreased, or altered, by appropriate selection of the “measurement noise” associated

with the forcing vector.
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An Algorithm for K,.

As mentioned earlier, the necessary conditions for Case 1 which considers the feed-
forward of the command vector, 2zx, are linear functions of the gain K., which can be
seen by observation of Eq. (29) - Eq. (32). Although linear, these matrix equations are
coupled; so that an explicit expression for K, cannot be easily obtained. In contrast, the
gain K., the feedforward of the command forcing vector, can be easily solved for in an
explicit expression as shown in Eq. (35) - Eq. (38).

In order to develop an algorithm which results in the optimal feedforward gain, K,, we
will make use of a basic principle of linear operators. Let £ be a linear transformation from
some p-dimensional real linear space into itself, and let {e;, 1 < 1 < p} be an arbitrary
set of basis vectors spanning the space. To an arbitrary vector K in the space, having the

representation

4
K= Z K;e; s K;eR (40)

associate the column vector KeRP

K,

- K,

k=" . (41)
K,

Then, the matrix representation, L, of the linear transformation, £, satisfies the equation

CJ) =L; = Z Lj e ) 1<j<p ) (42)

L= (Lilal...1E5) - (43)

If K is given by Eq. (40), then
(K)=LK . (44)
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Now, rewrite Eq. (32) in the form

rz‘[Pzz¢zszz+Pzzrz+Pzz¢z]-Pzsz-:O

(45)

Equation (45) can be viewed as a linear transformation from the space of r X n, matrices

into itself. We will view Eq. (45) as corresponding to

L(Ky)+Lo=0 ,

where L, is a r X n, matrix.

Consider the basis {e;, 1 < j < rn.} defined by

1 0 0 0 0 0
0 0 0 1 0 0
€] = . : ) €y = .
0 0 0 00 0
01 0
0 0 ... 0
€rip1 = T . s elc.
0 0 ... 0

Of course, other basis selections are also possible.

From the preceding discussion, it follows that

LK, +L,=0,

f( z= -L! io ’
whenever L is invertible. This leads to the following algorithm.
ALGORITHM:

STEP 1. Solve the Lyapunov equations

Proj =¢T Poyjds— ¢T PosTzej, 1<j<rn,

(46)

(47)

(48)

(49)

(50)

(51)
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Sz2jbz — $zSz25 = Tz €5, 1<)<rn,

STEP 2. Compute L

Lj = I‘Z-‘[Pzz ¢z szzj + P::zj ¢z] - ﬁzz €y

STEP 3. Form the L

L= (Ellizl..olirn')-

STEP 4. Solve the Lyapunov equations

P:l:zo=¢£Pzzo¢z+¢£Pzzrz+sz

s:uo ¢z - ¢z szzo = rz

STEP 5. Compute L, and form f,o

L, = I‘f[Pzz ¢z szzo + PrzT2 + Przo ¢z]

STEP 6. Solve the linear equation

-

STEP 7 TFo 7’8 A mneeanes e the ‘sradi

wrvy ~an
AVAiALL Arxy WiLW WWVILILPUVC

Pﬂ‘=¢:£Pz::¢z+¢fp::z(rz—rsz) + Qzz

szz ¢z - ¢z szz =l;-T: K,
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(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)




P:‘:z Kx - rr[Pzz ¢x Szz + P:::l: rz + Pzz ¢z] (61)

STEP 8. Compute the forcing vector gain, K;.

. .
K, = P TT|PeaT + Pos] W, [Wy + V] (62)

The algorithm uses the fact that S, and P, although ‘linear’, are not homogeneous
functions of K,; so that the non-homogenrous part is separated in the algorithm and
combined in a single term, namely L,.

It should be noted that the algorithm is not iterative, so that convergence questions
do not arise. The problem solved is a set of coupled linear equations, and the solution is
functionally obtained by inverting a rn, X rn, matrix, namely L.

On the other hand, the algorithm requires the solution of 2(rn; + 1) Lyapunov equa-
tions and the inversion of a square matrix of dimension rn,. When dealing with ill-
conditioned matrices and high order problems, the accuracy of the solution may be of
concern. Usual techniques to improve accuracy may be used in such, as yet hypothetical
cases. Importantly, it is possible to test the accuracy of the solution, K, by computing
the ‘gradient’ of the cost function with the exception that S,, has been eliminated from
the expression for the gradient. The norm of this pseudo-gradient which is computed in
Step 7 of the algorithm provides an indication of the accuracy of the solution obtained.

The solution is unique if L is invertible. In this case, the feedforward gain obtained
is the global solution to the stochastic optimization problem considered. It is desirable to
obtain conditions which determine the invertibility of the matrix L in terms of parameters
such as ¢., ¢, 'z, etc. which are more directly related to the physical aspects of the
control problem under consideration. On the other hand, the author’s experience on this
problem which has been necessarily limited, has always resulted in an invertible L, hence

a unique solution of the global optimal solution.
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Finally, it may be of interest to note an identity which can be used in the algorithm

as an alternate expression for Eq. (53), Eq. (57) and Eq. (59).

rf[Pzz¢zszz+Pz=rz+Pzz¢z]_Pzsz

= rf{Pzz[¢z szz + Pz - Pz Kz] + Pzz ¢z} — RK, (63)

= rf(Pzz szz+Pzz) ¢3-RK, . (64)

where Eq. (31) has been used in Eq. (63). The expressions in Eq. (63) and Eq. (64) may
be interchanged when desirable. The latter expression is somewhat simpler, particularly

when the control weighting matrix, R, vanishes.

Constant Command, ¢, = I.

The most straightforward way in which a constant command can be modeled would

be to simply select a command model where

Zk+1 =2k +¢k . (65)

As a constant command is a commonly used desired trajectory, we will investigate this
special case in more detail to obtain the feedforward control law for it. As will be seen,
it is possible to obtain an explicit expression for the feedforward gain, K, for this special
case,

The necessary conditions in Eq. (30) and Eq. (31) can now be solved explicitly for

T/ a- -—ta_*_
Az LU UVLalll

Poo=(I—¢D) M¢T Poo(T2 — T2 K2) + Qza] (66)

Szx = (I - d’z)—l(rz -T; KI) . (67)
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Substituting these expressions into the necessary conditions expressed in Eq. (64) and

manipulating, we obtain

K, = (rf Pzz T:+ R)_lrflpzz T+ (I - ¢£)—1 sz] ’ (68)
Pzz = Pzz(I - ¢z)—1 + (I - ¢£)_1¢: Pzz ’ (69)
Pzx =Pzz+Pzz ¢z(1_¢z)—1 + (I—¢£)—l¢£ P:l:z ’ (70)

where P, is given by Eq. (29).

It should be noted that since the closed-loop plant transition matrix, ¢, is stable, all
its poles are strictly inside the unit circle. Therefore, (I — ¢,) is invertible. In this case,
the existence and uniqueness of an optimal solution is determined by the singularity of the
matrix (I'T p,.T; + R).

For the constant command case considered here, it is therefore not necessary to use
the algorithm given in the previous section. Finally, it is possible to obtain a similar

expression for the command forcing vector feedforward gain, K, by simply substituting

Eq. (66) into Eq. (37).

A Simple Example.
To illustrate the stochastic feedforward control law optimization developed in the
preceding sections, we will consider a simple 1* order example with a constant command

model.

Tk41 =P ZTE + YU+ Wk ’ o] <1 ’ (71)

where {wx} is a white noise sequence with zero mean uncorrelated to the command state
and forcing vector, z; and ¢, respectively. We model the class of desired trajectories by

the 1t order command model
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Zry1 = 2k + ¢k ) (72)

where we model {¢;} as a zero mean white noise sequence uncorrelated to the initial
command 2, which may have a non-zero mean.
Suppose that we would like h; zx to track h; zx as closely as possible at all sampling

instants irrespective of the control activity required. Now, using the results of the last

section, we have

 Qullte) _ Qu K
P = - e(1-p) -9~ (-9 ° (73)
vQzz YQzz 7z
— (1_‘P) (1—90)2 ___(1_‘P)Q::z Tz
s '72 Q:zx + R YQzxzx + v ’ (74)
(1-¢)?

where R has been assumed zero. If we further substitute —h, h, for Q.4, h; h; for Q.., and

null v,

K,=—(—1-:1T—‘°):—: . (75)

Using the optimal feedforward of the command vector, 2z,

h
Tkt1 =‘P-'5k+(1“‘P)Eizk+wk . (76)
z

To see the effect of this control law, suppose that at some sampling instant k,

hezr = hz 2k ’ (77)

then
h h h
s =t (l-@)atw = Tatw (78)
z T xz
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It is seen that, as would be expected from an feedforward controller designed for
a constant command, this control law maintains zx4; at a constant desired value (with
the exception of plant noise effects which are attenuated by the feedback design). This
feedforward controller drives the state to the desired trajectory, based on the assumption

that the command vector is most likely to remain constant. Note that

Ze41= E(zkq1|z) =2z (79)

so that the least-squares estimate of the next command h, 2, is in fact the last command
hz 2.

Thus, when the feedforward controller is limited to using only the command vector,
based on a constant command model, the design performs exactly as would be expected,
and drives the state to the desired constant, and then maintains the commanded value.
If the command state, 2k, is not completely constant, but moves slowly, the state will
track the movement with some error. It may be noted that the Command-Generator-
Tracker (CGT) deterministic feedforward controller for this problem is the same as the
one obtained here; i.e., Eq. (75). It should also be noted that, for this example, non-zero
control weighting (i.e., R > 0) produces less than perfect tracking.

Now we remove the restriction that only the present command value, 2, be used in
the feedforward law, by allowing the current value of ¢x to be used. Assuming that ¢; is
perfectly known at sample k, we set 175 equal to zero. Using Eq. (39), the optimal gain for

the forcing vector, ¢, can be found to be

H—_—:o) z ~ k. (80)

Substituting the optimal K, from Eq. (75) into Eq. (80), and manipulating

o= [ e 20 2]

Kg == (81)

2=
:-|:-
s N
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The full feedforward control law now becomes

up = —— " Zzp+ = o= , 82
A L (82)
h, h,
zk+1=‘P3k+(1—‘P)rzk+r§k+U)k . (83)
z z

Assume, as before, that at sample k perfect tracking was achieved; i.e., Eq. (77) holds.
Then,

h h
Ik+1=h—'(zk+s‘k)+wk=f
z z

When the feedforward law is not restricted to z; alone, it is seen that the state

Zx41 + wi . (84)

tracks the command perfectly, neglecting the plant noise effects. This improvement in the
tracking performance is due to the availability of accurate lead information in ¢x. It is
clear that, in this simple example, the feedforward law given by Eq. (82) will track the
desired trajectory at every sampling instant, as long as the plant parameters ¢ and « are
perfectly known and do not vary.

Although illustrative of many true trends, this example is of low order and does not

represent all the complexities of a realistic design problem.

B. A STOCHAST!C FEEDFORWARD/OUTPUT FEEDBACK DESIGN METHODOLOGY

Having both feedforward and feedback control design techniques available for use, it
is necessary to also have a methodology which combines these two control designs to solve
realistic and practical control design problems. In particular, the control design method-
ology should have the capability to: 1) accommodate a variety of control law structures,
2) allow the use of different control design techniques to achieve desirable characteristics,
and 3) have a simple and practical implementation free of the often-encountered problems.

In many control design problems, the specification of the control objectives also imply

and sometimes require a particular structure for the control law. For example, if it is
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necessary to have zero steady state tracking error in some variable in response to a constant
command despite small variations in the plant parameters, then an errof integral feedback
structure is necessary to achieve this objective. Whereas if a bias error in that variable
can be tolerated, then only an error feedback is sufficient.

Similarly, in many problems the unavailability of sensors which accurately measure
every state variable makes it desirable to use dynamic compensation in the feedback loop.
In other cases, a decentralized control structure may be desirable. A methodology which
can accommodate a rich collection of the combined feedforward and feedback control law
structures is desirable.

On the other hand, a large variety of feedback control design techniques are now avail-
able. These include modern control design methods such as stochastic output feedback
or full state feedback techniques, multi-configuration control (MCC) techniques, decen-
tralized control techniques [13], as well as classical control and frequency domain design
techniques. As most of these design methods focus on achieving certain desirable control
characteristics, it is desirable to have a methodology which accommodates the use of many
design methods.

Finally, many modern control design techniques sometimes fail to adequately consider
the digital implementation of the control law. For example, methods of avoiding the use
of trim values, eliminating integrator wind up, minimizing the effects of control rate and
control position limits, asynchronous sampling of sensor outputs, delays, etc. ought to
be integral concerns of the design methodology. A design approach in which as many as
possible of the practical implementation issues are explicitly treated is desirable.

To develop a methodology which formulates a combined feedforward and feedback
control design problem which addresses most of the realistic issues raised above, consider

a linearized plant model of the form

Zr41 = bzZk+Trup+ war + d, ’ (85)
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where the state Zx, the control ug, correspond to the total values of the corresponding
quantities rather than being perturbations about their trim values, w; is the white plant
noise and d; is a constant vector arising from the linearization of the nonlinear plant about
some operating point. When the plant operating point changes, all the plant parameters
such as ¢, Iz, T';, T and d; may change; however, it is assumed here that the changes in
these parameters occur at a much slower rate than the variations in the state zx, controls
uk, etc., so that the plant parameters are assumed constant except when explicitly stated
otherwise.

The feedback vector is assumed to admit a linearization of the form

gk =CzZr+ve+dy, (86)

where d;, again is a constant vector which depends on the point about which the lineariza-
tion is obtained, and v, represents the measurement noise assumed to be a white noise
sequence.

As in the previous section, we will limit attention to the class of command models

which admit a discrete stochastic model of the form

Zpy1 = Pz 2k + Sk ) (87)

where {¢x , k > 0} is a sequence of uncorrelated random vectors with zero mean, such that

E(xvi)=0 , E(xwi)=0 , (88)

E(xz;)=0 , E(xz)=0 . (89)

We consider the basic control objective to be the design of a combined feedfor-

ward /feedback control law where only the vector, §x, is used in the feedback law, and
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H, ) tracks H, z; as closely as possible for a given class of commanded trajectories in the
presence of disturbances and despite uncertainties about the plant.

In many applications, the designer may be interested in a control law structure which
contains dynamic compensation and integral feedback to achieve certain objectives. Fur-
thermore, it may be desirable to have an inner loop/outer loop structure or to have some
fixed (previously designed) filter provide some state estimates. Such dynamic subsystems
as an inner loop or a filter can be included in the plant model described in Eq. (85).

Furthermore, in many cases it is desirable and important to distinguish between the
variable describing the commanded control value and the actual position of the control
(the physical quantity such as an elevator position, or an electrical current). These two
quantities, the commanded and the actual control values, are usually related through an
actuator subsystem which should be modeled and included in the plant dynamics model
in Eq. (85).

In other cases, the designer may decide on a control rate command structure rather
than using control position commands. This has a variety of advantages such as low-pass
filtering the control command thus reducing unnecessary control activity, and providing the
commanded control position for feedback when the actual control position is not measured
and used for feedback.

In most of these cases, it is necessary to use a formulation which accommodates
output feedback for the controller. Here, it is assumed that the types of control structures
mentioned above have been included in the plant dynamics and the feedback vector models

given by Eq. (85) and Eq. (86), respectively.

Error Formulation.

While the plant and feedback vector models can be used in the form given by Eq. (85)
and Eq. (86), it is often convenient and desirable to have state variables which represent
the error in some of these variables instead of their values with respect to some fixed frame

of reference. In cases where a plant state variable is being commanded by a command
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model state variable, defining the error as the difference is straight forward. Also state
variables corresponding to the time rate of change of already defined error terms can be
easily obtained. However, since many variables are not directly commanded, only some of
the state variable errors terms can readily be defined in this manner, while the remaining
ones maintain their previous representations.

Let H be a n X n, dimensional matrix relating the command model state, 2z, to the

plant model state, %, and let

zr =% — Hz (90)

Substituting Eq. (85) and Eq. (87) into Eq. (90) and manipulating, the dynamics

equations for the new state vector, zx, can be obtained.

Th+1 =Gz Tk +Toup + (¢ H — H)zp — Hop +wap +dz. . (91)

It is seen that while the plant model in Eq. (85), as is usually the case, does not
depend on the commanded model state and forcing vectors, the description of the plant in
terms of errors introduces such terms; hence, the inclusion of command state and forcing
vector terms in the previous section dealing with the design of feedforward control. It
should also be noted that the control vector u; in the plant representations given by Eq.
(85) and Eq. (91) is the same. So that the new plant representation still deals with the
same control values that drive the plant.

Now consider the feedback vector in Eq. (86). The components of the feedback gen-
erally coiiespond (o sensor ouipuis, filier ouipuis, dynamic compensaiion staies, conirol

command values, etc. It is possible to use the vector §x by substituting Eq. (90).

gk =Co(zx+ Hzr)tvrk+dy=Coxx + C: Hzp +vp +dy | (92)
On the other hand, it is often convenient to think in terms of error feedback. So that
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a new feedback vector consisting of the error terms defined in Eq. (90) may also be used

in the form of gy — C. H z; i.e.,

Gk —C:Hzp = Coxp + v + dy (93)

Since the command state, 2, is known at the k** sampling instant, implementation of the
error feedback vector in real time is clearly possible.

To maintain further generality, we will consider the plant and feedback models in the

form given below

zk+1=¢zzk+rzuk+rxzk+r§§k+wzk+dz (94)

yk=czzk+czzk+vk+dy ’ (95)

where the standard error feedback case shown above would correspond to Cy being null.
From the limited experience and experimentation performed in this study, it appears

that better performance is achieved when the error formulation is used in as many vari-

ables as applicable. Due to the limited time available, the reasons for the differences in

performance or methods for best selection of H were not investigated in this study.

Dynamic Compensation and Integral Feedback.

In many cases, it is of interest to include dynamic compensation in the control law to
achieve particular objectives. The objective may be to estimate a variable for purposes of
feedback, or to provide more robustness or insensitivity.

Similarly, it is usually of interest to have integral feedback of the tracking error, or of
equivalent variables, in order to obtain a type 1 system. To accommodate these often used
control structures, augment the plant state model given in Eq. (94) by the compensator

and integral error models
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Ck+1 = PeCk + Uck + Wek , (96)

iy =In+ At(Hyye — Hz 2x) +wik R (97)

H,=H,C, . (98)

Note that the “integrator” is a digitally implementable accumulator. Also note that
the tracking variables, H, yi, have been assumed to be a linear combination of known or
measured, yx, rather than possible unavailable state variables in zg.

The dynamic compensator is assumed to be of order n. which can be selected arbi-
trarily, according to the desired objectives. The compensator state transition matrix, ¢, is
also arbitrary, and should be selected in accordance to the cost function which will produce
the closed-loop compensator. The white noise sequences w.x and wrx are included largely
for generality. They could be interpreted as round-off error, variations in H,, jitter, etc.;
however, most importantly, they can be used as design parameters which modulate the
optimal feedback gains.

The basic form of the combined feedforward /feedback control law is assumed to be

Uk = — zyyk-—chCk—Kz]Ik—'Kzzzk—K2$ §k+a-‘l ’ (99)

Uck = ~Key Yk — Kecer — Ker Ik — Koz 2k — Ko Sk + e . (100)

Note that, for the augmented problem, the feedback vector, yk, is also augmented by
the compensator state, ¢k, and the error integral variables, Ix. The feedforward control
law has been constrained to use only the command state and forcing vectors, zx and ¢,

respectively. Finally, @, and #. are unknown constant (with respect to k) variables arising
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from the fact that the variables used are not the perturbed values, but correspond to the
total values including the trim values of the variables. As an incremental implementation
will be used, it is not necessary to actually compute the constant vectors.

It should also be noted that the control vector, may be selected to be the rate of the
actual control position variables by augmenting the plant model accordingly. This would

result in a control rate command structure.

Feedback Design Model.
Suppose that the feedforward control sequences {u}; ,k > 0} and {u?, ,k > 0} pro-
duce a satisfactory trajectory. Then, when no plant noise or measurement noise is present,

then trajectory will be given by

Thr1 =Pz xp +Touzp +Tozk + T+ ds , (101)
Chy1 =PeChtum (102)

Iipy=Ii + At(Hyyp — Hy z) (103)

vk =Cozp +Cozx +dy . (104)

Since the actual plant, compensator and integral states evolve according to Eq. (94),
Eq. (96) and Eq. (97), respectively, the deviations, or error, in these variables can be

defined as

T =Tk — z,‘; s Upk = Uzk — u;k s ek = Uek — “:k (105)

Gx=wve—yi, Ie=h-Ii, & =cx—ck. (106)
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Manipulating, it is seen that the error in the state has the dynamics

Ty = Ok Zp +Tollzk +war (107)

Ckt1 = Gc Sk + ek + wek (108)

Iepr = I+ At Hy % + (wik + At Hyvi) (109)
Uk =Czir+ve . (110)

The deviations in the actual state relative to the desired trajectory are seen to be due
to plant and measurement noise, and initial condition mismatch. Of course, in practice
these deviations are also due to changing plant parameter values, unmodeled nonlinearities,
unmodeled dynamics, sampling errors, etc.

Since all the terms containing the command model have canceled, the deviation about
the desired trajectory is seen to be independent of the command state. Thus, the possibly
unstable command model has no direct impact on the feedback control law design. Where
highly nonlinear effects which involve the command state exist, the command may not
cancel; however, this is not a usually encountered case.

Therefore, the design of the feedback control law can be done largely independently of
the feedforward control law. The usual major objectives of feedback, such as stability about
the desired trajectory in the presence of disiurbances and despiie unceriainties about, and
variations in, the plant models, can thus be pursued using the dynamical system describing
the deviations about the desired trajectory in Eq. (107) — Eq. (110 ).

The feedback vector, in this case, is taken to be (§T &é¥ IT )T. So that a control law

of the form
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&zk = —fizy gk — Ky Cr — K. jk (111)

ack = —Lfey gk - ch Ck— Kcl ik (112)

can be designed using any modern or classical control design technique. In particular,
note that stochastic output feedback [11], [12], multi-configuration control or decentralized
control techniques [13] can be used for this purpose. In the following, it will be assumed

that the feedback control law thus designed stabilizes the closed-loop system.

Feedforward Control Model.
Having designed a satisfactory feedback control law, recall that the feedforward control

in Eq. (101) - Eq. (104) is arbitrary, and can now be selected using a stable closed-loop

system.

Consider the following change of variables in the control vectors u}, and u},.

“;k = u:k + sz yl: + Kzc cl‘: + K1 I]: (113)

Hok = Uk + Key yi + Kee ¢k + Ker It (114)

Substituting these expressions into Eq. (101) - Eq. (104), we obtain the feedforward

control model

xl:+1 = (¢z -T: Ky C;)Zi ~ Tz Kz c; —T: K.r I}: +T. I‘:k

+ (rz - rz sz Cz)zk + r; Sk -+ d; (115)

c;c+1 = "'Kcy Cz :B; + (¢c - Kct) c;c — K1 Ii + u:k - Kcv Ceze t+ d: (116)
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ILyy=I+AtHz; — (H, — At H, C,) 2 + d} (117)

Zky1 = Gz 2k + Sk (118)

where

d:=d, —-T.K,yd, , d:=-Kyd, , dj=AtH,d, , (119)

are constant vectors depending on the trim conditions for the particular operating points
used.

From the discussion above, it is clear that the feedforward control design problem is
one finding control sequences {u?, , k > 0} and {u}; , k > 0} in terms of a given subset of
the augmented state variables zj, ¢}, Iy, and 2k, ¢k, when the command state transition
matrix ¢,, is not necessarily stable, such that {Hyy; — Hz2zr, k > 0} is as “small” as
possible.

A full analysis of the many interesting cases where different subsets of the augmented
feedforward model state are selected is beyond the scope of the current study. Only the
two cases solved in the preceding section will be treated in some detail. However, the full
state feedback case is worthy of note.

Consider the case where the feedforward control law form is unrestricted and {¢x,
k > 0} is a Gaussian white noise process, with all initial conditions also being jointly
Gaussian. With a quadratic cost function, it is well-known [4] that the optimal control
is the solution to the LQG problem. The case where the plant contains unstable and
uncontrollable modes, has been treated by the author as a disturbance accommodation
problem (8], [7]. It is clear that the most accurate feedforward control law would be

obtained by this unconstrained solution.
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While this solution has a variety of desirable characteristics, it also has a disadvantage.
It requires the computation of the augmented desired trajectory zj, ¢}, Ik, 2k, ¢k as a
part of the feedforward controller. With the increasing speed and memory capabilities of
flight computers, this is not necessarily impractical, but will not be pursued further in this
study.

Now consider the case where the feedforward control is restricted to the form

Pak = —Kazz 2k — Kzg 6k — 13 (120)

Bor = —Kes 2k — Koo Sk — pie (121)

Using a quadratic cost function of the form of Eq. (5) which includes the most common
case
. 1 X * 2
T= i oy B O vk - Heally (122)
it is possible to obtain the optimal feedforward gains K,,, K;;, K¢z, and K.
It is important to note that the treatment of the feedforward control law in the
preceding section accommodates the cases where any one of the feedforward gains is set

to zero or some other constant.

To obtain the total control law, recall that from Eq. (105),

Uzk = Uz + Ugy , Uk = ok + ULk . (123)
Ugp = — Ry ¥k — Keecx — Kor I + /‘;k (124)
Uck = —Kcy Yk — Kecex — Kcr Ik + ”':k (125)
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The combined feedforward/feedback control law with dynamic compensation and in-
tegral error feedback can be obtained by closing the loop on the compensation in Eq. (96)

with Eq. (125).

Ck41 = (¢c - ch)ck - Ker I — Kcy Yk — K.y 2z — Kc; Sk — F‘: (126)

Iy = I + At(Hy yr — H, 2) (127)

‘uzk-_——szyk"chck_KzIIk—Kz’zk_Kzf fk—"'; (128)

Of course, it is also necessary to compute and update the command state and forcing
vectors, z; and ¢k, respectively, according to the desired trajectory. Note that since the
feedforward law only uses the current values 2z; and ¢x, these commands need not be
available ahead of time and could be real-time pilot inputs or may be computed from

real-time pilot inputs.

C. IMPLEMENTATION

While Eq. (126) - Eq. (128) with the addition of the command state and forcing
vector constitute the combined feedforward /feedback control law, there are a number of
advantages to implementing the control law in incremental form.

First note that the constant terms u; and u; have not been determined. Even though
it is possible to compute these vectors using trim conditions, it is more convenient if the
control law were not to require these vectors. A second advantage to an incremental
implementation is the elimination of the integral terms. When the tracking error is, at
least temporarily, large, the integral state I can reach very high values. This usually leads
to the control commands reaching limits. Even though the tracking error may have been

reduced to small levels, it can take a considerable amount of time before the integral state
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reaches reasonable levels, and the limiting of the controls is eliminated. The unnecessary
effects of this phenomenon, referred to as “integral wind-up” can largely be eliminated by

an incremental implementation.

By simply differencing the control law,

Aly = At(Hyyr—1 — Hy 2x-1) (129)

Acky1 = (¢c - ch)Ack“ Kcy(yk - yk—l) — K1 Al

- cz(zk - zk—l) - Kc; (fk - fk—l) (130)

Ugk = Uzk—1 — sz(yk - yk—l) — Kzc Ack — K1 Al

- Koo(2k — 2k—1) — Kge($k — Sk—1) (131)

Zk+1 = f(2k¢k) Sk = gk (132)

When uz; has been modeled as a control rate command with a zero order hold, the actual

control position commanded is given by k.

Sp4+1 = Ok + At uzg . (133)

where the control position command 6 is part of the state zx. Other holds will result in
similar expressions.

Thus, the actual implemented digital control law is given by Eq. (129) - Eq. (133).
It is seen that the constant terms depending on the trim conditions have canceled out and

do not appear in this implementation.
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It should be noted that the initial condition for the error integrator states, I, is not
needed in this implementation. Only the initial control variables u.,, and sometimes 6,
and the initial compensator increment Ac, are needed at initialization. The initial condi-
tions for the control variables can be set equal to the actual control values at initialization.
When a dynamic compensator is designed, the best selection of the initial compensator
value is not clear; however, in many cases, the objective of the compensator and the initial
plant operating point provide a good choice. For example, when the plant initially is in
trim (i.e., in a steady state condition), the initial compensator increment, Ac,, would be
selected as zero. According to circumstances, other choices are possible. A more detailed
study of the selection of the initial conditions, particularly when obvious choices are not

available, is necessary.

When the plant, due to mechanical reasons, has limiting effects on the movement of
the actual control variables, it is desirable not to command the controls to exceed these
limits since such commands will not be followed. Therefore, it is often desirable to have
control rate and control position limits set in the control law. In this implementation, such
limits are easy to implement and generally have little negative impact. Rate limits can be

applied to u,x and position limits to 6.

It is important to distinguish between limiting action due to the feedforward com-
mands as opposed to feedback related commands. It is important to note that, in a
satisfactory design, there should be no plant limiting due to feedforward commands, ex-
cept in some circumstances. The feedforward control design should include an analysis of
maximum control commands implied by the class of commanded trajectories. In general,
itions should be avoided by appropriate changes in the command
state and forcing vector.

In other words, the feedforward design philosophy proposed taken here is to command
only trajectories which can physically be achieved by the plant, and avoid using up the

control authority in the feedforward control, thus leaving some control authority to the
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feedback controller. This has two desirable effects. The first is to allow the feedback
controller to close the loop and provide its main objective; i.e., stability. This is of utmost
importance in plants which are open-loop unstable or have relaxed static stability, as is
the case with many high performance aircraft. If the feedforward commands were to reach
the plant control limits, the feedback law would not be able to close the loop and perform
its critical objectives. The second effect of this philosophy is to maintain the nonlinearities
in the command model generating the desired trajectory. If an unachieveable trajectory is
commanded, the precise outcome is not clear; i.e., the actual and desired trajectories will
diverge; however, the nature of the divergence is no longer controlled, and how to recover
from the divergence is not clear. Whereas by commanding and tracking a trajectory which
may be somewhat different than originally desired, tracking control is maintained, and
can be used to converge with the originally desired trajectory. The ease with which such
nonlinear command models can be implemented digitally, as opposed to analog designs, is
also worthy of note.

Finally, the usual type of “integrator wind-up” is eliminated in this implementation
since the integral itself is not explicitly computed. Of course, when no limiting occurs,
the effect of the integrator is unchanged; the integration is simply performed at a different
location, namely in Eq. (131). However, when (nonlinear) limiting occurs, the effects are

usually much more benign.

Eigenvalues of Implementation.

Since the implementation is obtained by differencing the control law designed, it would
result in the same numerical control commands when all initial conditions are appropriately
matched, no nonlinearities and no random disturbances are present. However, since these
conditions rarely, if at all, hold, the implemented and designed control commands are not
the same.

It is important to note that the implemented control law is closely related to but

different than the designed law. For example, the implemented law depends on both yi
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and yx—1, whereas the designed law only uses yx. It is therefore necessary to investigate

the closed-loop characteristics of the implemented control law.

After some manipulation, the implemented closed-loop system can be written as

Tk41 ¢z — rzK:yCz —TI';K;. —T:K.1 rszyCz A Zk

Ack-{-l _Kcycz ¢c — K. —Ker Kcycz 0 Ack

ALy, | = AtHyCz 0 0 4] 0 Al (134)
Tk I 0 0 0 0 Tk—~1
Uzk "'szCz — N zc — K1 szcz I Uzk—1

where the command model state and forcing vector, zx and ¢, and the constant vector dj
have been set to zero as they do not affect or modify the closed-loop eigenvalues.

It is clear that the stability of the implemented closed-loop system is determined by
the eigenvalues of the matrix, ®;, rather than the eigenvalues of the designed closed-loop

system shown below.

Tk+1 ¢z - rszycz - K. -T:K, Tk
Ck+1 = '—Kcycz ¢c— Kee —Ker Ck ’ (135)
S AtH,C, ] I Ii

where the vectors zx, ¢x and the trim related constant vectors, which do not influence the
closed-loop eigenvalues have again been set to zero for convenience.

The state transition matrix in Eq. (135) will be denoted by @ p, while the implemented
state transition matrix in Eq. (134) will be denoted by ®;. Now, to investigate the

relationship between the eigenvalues of ®; and ®p, consider

o, X=2X , XT = (27 T IT 2T u7) (136)
where X has n + n. + ns + n + r components.
THEOREM 1. Any eigenvalue of ®p is an eigenvalue of ®;.

=i T . .
PROOF: Suppose that (27 ¢éT IT)" is an eigenvector of ®p corresponding to the eigen-
value A. Note that there is at least one eigenvector for each eigenvalue, no matter its

multiplicity. Let
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=2 , e=(MA-1) , I=(A-10f , =z=z , (137

u-——--—szCzi—K:cE—Kin 9 (138)

for the augmented vector X according to the partition shown in Eq. (136).
To show that X is eigenvector of ®; corresponding to the eigenvalue A, we write &; X

accordihg to the partition and manipulate using the fact that X is also an eigenvalue of

®p.

(¢z — T2KzyCr)(AE) — ToKze(A —1)é — T Kor(A — 1)1+ T K, C,E 4+ T,u
= M@z — T2 K;4C:)E — AT K& — AT Koo

= A(A%) = Az (139)

—KyCz(A2) + (¢e — Kee)(A— 1)& ~ Keg(A — 1) + Koy Co 2

=(A-1)(Ag) = Az (140)
AtH,C.(A%) = AAI-1) =AM -1)I=AI (141)
Iz =)=z (142)

~K,,C.(A%) — K;e(A — 1)é~ Koy(A — 1)] + Ky CaZ + u

=(A-1Nu+u=2Au (143)
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Therefore, X is eigenvector of ®; corresponding to the eigenvalue )\,‘and the assertion
is proved.

Thus, the designed eigenvalues are maintained in this implementation. Note that we
have further shown that the eigenvectors of the implementation are very closely related to
those designed; i.e., Eq. (137), Eq. (138). Note that other incremental implementations
also maintain the designed eigenvalues [10].

It should be noted that the case of eigenvalues with multiplicity greater than one has

not been considered, although, it would seem that the multiplicity may also be preserved.

THEOREM 2. ®; has exactly n + ny + n. — r. zero eigenvalues, where

e = rank (¢C - ch - cl Kcycz) (144)

PROOF: Using Eq. (136) for A of zero, we obtain

$z+ T i=Az=0 (145)

—K.yezz + (¢ — Keo)e — Kol + KoyCoz_ = Ae =0 (146)
AtH,C,z = Al =0 (147)

Iz=Xz_=0 (148)

=—K;yCoz— K::C— Kzl + K;yCox_ +u=2iu=0 (149)

From Eq. (148) and Eq. (149), it is seen that z and # must vanish. Then, Eq. (145),
Eq. (147), Eq. (148) and Eq. (149) are automatically satisfied. The remaining constraints

are
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U= chc + KzII - szsz_ (151)

XT=(0T CcT IT zT uT) (152)

where u is given by Eq. (151) and (c,I,z-) satisfies Eq. (150) is an eigenvector of
®; corresponding to the zero eigenvalue. Since Eq. (150) has n. + n; + n — R, linearly
independent solutions, there are as many linearly independent vectors X satisfying Eq.
(150) - Eq. (152), which is the desired result.

Note that since r. < n., the implementation has at least n + n; zero eigenvalues.
When, as is usual, the number of integrals is selected to be the number of plant controls,

all eigenvalues are accounted by the two theorems.

COROLLARY. Let ®p have distinct non-zero eigenvalues and nr = r; then the eigenvalues

of ®r consist of those of ®p and zero.

PROOF: By Theorem 1, the n+n.+ ny eigenvalues of & p also belong to ®;. By Theorem
2, &7 has n + r zero eigenvalues, which are necessarily different than those of ®p. Thus,

all 2(n + r) + n. eigenvalues of ®p are accounted for.

It is interesting to note that if the number of integrators used is greater than the
number of plant controls, then some of the eigenvalues of ®p must necessarily be zero.
This seems to provide a further implication that the number of integrators should be
selected to be no greater than the number of plant controls, irrespective of the order of
the dynamic compensator.

On the other hand, if the number of integrators is smaller than the number of plant

controls, all the eigenvalues of ®; are not necessarily accounted for by Theorems 1 and 2.
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In such cases, it is necessary to investigate the implemented closed-loop eigenvalues further,
to ascertain that unstable eigenvalues (e.g., A = 1) are not introduced in the process. To
accommodate some cases, it is sometimes possible to use different implementations which
circumvent implementation instabilities [14].

To illustrate the possibility of unstable eigenvalues, the following Theorem will be

stated without proof.

THEOREM 3. ®; has an eigenvalue of unity if, and only if, the matrix below is singular.

¢z -1TI 0 rz
AtK . H,C, I—¢o+ Koo O (153)
AthIHsz ch 0

This theorem illustrates that when no integrators are used in the design, so that
H, vanishes, the matrix in Eq. (153) becomes singular, and the implementation has
eigenvalues equal to unity which may, and often do, cause problems. This effect of the use

of integrators provides a further incentive for their use in the control law.
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III. DESIGN OF DIGITAL AUTOMATIC LANDING SYSTEM

In this section, the design of a digital integrated automatic landing system for NASA’s
Advanced Transport Operating Systems (ATOPS) Research Aircraft will be described.
The ATOPS aircraft is a Boeing 737-100 which is used by Langley Research Center as a
research vehicle equipped with special equipment and flight computers with which auto-
matic control systems can be implemented in flight tests.

The automatic landing system described in this report is the successor to the Digital
Integrated Automatic Landing System (DIALS) designed by the author using full state
feedback techniques and random disturbance accommodation results [14], [8]. This system
was successfully flight tested by NASA Langley Research Center [15]. The automatic
control system described here uses stochastic output feedback [12], [11] and the stochastic

feedforward techniques developed in the previous section.

A. LATERAL CONTROL LAW DESIGN

The design of the lateral control system follows the basic approach described in the
previous section; i.e., the stochastic feedforward and output feedback design methodology.
This requires the development of the design model, the feedback and the feedforward

controller designs.

Lateral Plant Design Model.

As described in the previous section, the design model is needed for both the feed-
back and the feedforward control law designs. This model contains the aircraft’s lateral
aerodynamic and kinematic model, as well as the control actuator models, any inner loop
control law and filtering which is already present and is intended to be part of the overall

controller. The design model also includes basic elements of the control law structure such
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as the open-loop models of any desired dynamic compensation, error integral feedback and

control rate command.

The aerodynamic aircraft model can be obtained by linearizing the general nonlinear

equations of motion (e.g., [16], [17]) about a flight condition with level wings, constant

airspeed, constant flight path angle corresponding to the desired glideslope, flaps and gear

down in the landing configuration. The linearized equations obtained are of the following

form.

./ [ ]
v =anv' +ajap+ajsr+aqd +an W,

+ 01164 + b126R + b1358p +d,

p=aav' +azxp+ axsr + ay; W)

+ b216A + b226R + b2358p + dp

. ! 4
T = aa1v + azzp + azar + anW,

+ b316A + b326R + b3353p + dr

d=p+tanb, r+dg

1/J=r+d¢

(154)

(155)

(156)

(157)

(158)

where ¢, 1, 0 are the roll, yaw and pitch angles, respectively, p and r the roll rate and the

yaw rate, respectively, v’ is the inertial velocity of the aircraft c.g. along the y body-axis

normalized by the nominal airspeed; 64, §R and §s, are the aileron, rudder and spoiler
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control surface positions, respectively; 8, is the nominal value of the_pitch angle. The
coefficients a;; and b;; are functions of the aircraft’s stability and control derivatives at
the flight condition used in the linearization.

The lateral wind model included in the design model is a simple first order system

describing the normalized lateral wind velocity, w), driven by white noise.

W! = -01W! +w, (159)

The kinematics in the lateral axis consist of the y-position of the aircraft c.g. relative
to some fixed axis. Figure 2 shows the lateral geometry and the definition of some of the
relevant angles and distances. The Earth-fixed set of axes has its origin at the glide path
intercept point (GPIP), with the positive x-axis pointing along the runway centerline in the
direction of the aircraft velocity at landing. The z-axis is along the local vertical positive
downwards; with the y-axis selected so as to make a right-handed coordinate frame.

Let V, be the nominal airspeed of the aircraft and Lgp = L be the 3 x 3 matrix
representing the transformation from the aircraft body axes to the Earth-fixed coordinate

frame described above. If L;; is the (¢, ) element of the matrix L, then

g' = Lay w' + Loa v' + Laz w' ’ (160)

where %/, v’ and w’ are the normalized inertial velocity components along x, y and z body

axes, respectively, and

L2y = cosfsiny (161)
Lag = stinp sinf@siny + cosp cos ¢ (162)
L3 = cospsinlsiny — stinp cosy . (163)
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The general expression in Eq. (160) can be approximated using small angle approxi-

mations to give

¥ =v —w, po+u,cos0,¢+d, , (164)

where u! and w/, are the normalized nominal velocity components along the x and y body
axes, respectively.

The lateral actuator models used for control law design purposes are given below

: (11)(1.531)

§A=—12.37854 + §A. (165)

1+ .0015G ¢

6R = —32.6T6R + 32.67(r; +r3) + 32.6T6R. (166)

where 6§ A and 8R represent the actual aileron and rudder surface positions, while § A,
and 6 R; represent the aileron and rudder commands generated by the control law, respec-
tively, and ¢ is the dynamic pressure. The variables r; and r, are inner loop (yaw damper)
variables which will be discussed in more detail later. The aileron and rudder actuator
models given above are linearized and approximated versions of nonlinear systems contain-
ing servomechanisms, hydraulic and mechanical systems with usual nonlinearities such as
hysteresis and limiting effects. A more detailed discussion of the actuator systems on the
ATOPS research vehicle can be found in [18]. The spoiler is not used as an independent
control surface, but rather as an aid in producing further rolling moment during turns in
ionilinéai programiied gain
on the flight computers, which is approximated to a simple linear relation in the design

model.

s, =1736A . (167)
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The ATOPS research aircraft incorporates a yaw damper. In the design of the auto-
matic landing system, the yaw damper is taken to be part of the basic airplane stability
control system and interpreted as an inner loop system which will be part of the overall
controller. The yaw damper model given below is therefore included in the design model

of the open-loop plant.

1= —0.3("1 + rz) ’ (168)

fq = —6.993r; +10.7485r (169)

where r is the yaw rate, modeled by Eq. (156). The variables r; and r, are then used to
generate the overall rudder command as shown in the rudder actuator model in Eq. (165).

Another system that is included in the design model as part of the open-loop plant is
a third order complementary filter. This filter uses a body-mounted accelerometer triad
along with position information from the Microwave Landing System (MLS) to obtain
estimates of the aircraft velocity in the Earth coordinate system. The complementary

filter is approximated as follows.

&'V = 10 = —10 20 + 10 a;, , (170)
¢ =%11 = z12 + 8(y — z11) , (171)
' =2~ 173
a, = U. p+r ’ ( )

o
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where a, is the body-mounted accelerometer reading for the x-axis, while a; is its normal-

ized form and xo the filtered acceleration, z;; and z,, are the filtered aircraft distance
from the runway centerline and z,, its rate of change.

As mentioned earlier, the control variables are the aileron and rudder commands 6 A,
and 6R,, respectively. A rate command structure is used in the design of the control law,

even though the actual implementation will command the surface positions.

6Ack+1 = 5Ack + At Uik ’ (174)

6Rck+1 = 6Rck + At U2k N (175)

where At is the sampling interval of the control law.
The design model accommodates a second order dynamic compensator, even though
the actual design does not use the dynamic compensator. However, the model is given

here for completeness.

Clk41 = C_SAtclk + At Uclik N (176)

Cok+1 = € PB%cop + Atuco s (177)

Finally, the control law structure is modeled with two integrators, shown below as

digital accumulators.

Ligy1 = L+ At(z11k + 5Z12k — Yor — 5 ULk) , (178)

Lky1 = Inx + At(px — ©ck) ’ (179)

where Y.k, Jcx and @ x are the commanded values for yi, yx and @i, respeétively. These

commanded values will be defined in the command model.
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The open-loop plant model used for the design of the lateral control law is obtained
by the augmented system consisting of the state equations (154) - (159), (164) - (166),
(168) - (172) and (174) - (179). It is important to note that Eqs. (174) - (179) which
contain the digital controller structure are defined in discrete form in exactly the way
that they will be implemented. Whereas the remaining equations of the design model are
given in differential equation form as they model continuous processes. The latter set of
equations must first be discretized using the usual sampled-data formulation [19] based on
the assumption that § A, and 6 R, remain constant over the sampling interval. Then this
set of discrete equations are augmented by the already discrete set (174) - (179) to obtain

the complete discrete design model for the open-loop plant of 20t* order.

Zrr1 =P T+ T up+ f, zx +wx +dz (180)

Lateral Command Design Model.

While the design model of the open-loop plant developed in the preceding is suffi-
cient to design the feedback control law, the feedforward control law design requires the
command design model. The command design model is used to obtain the structure and
gains of the control law; however, the implementation of the actual commands may use a
somewhat different set of equations as will be discussed in more detail in the following.

4th

The lateral command model is selected to be the order system given by

! ! - At? =7
Yekt1 = Vo + AU+ ——Tar > (181)
Uek+1 = Yok + Btdar (182)
t2
Pek+1 = ek + At pck + =Pk » (183)
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¢ck+1 = Sbck + At ‘55ck . (184)

The command model state vector, 2k, is

T
2 = (yék Yk Pck @.:k) ) (185)
At? . At? .
$1k = Ty::k y S2k = Atgly , 3k = T‘Pck y Sak = At Pk (186)

The resulting command model is

Zk41 = Pz 2k + $k (187)
1 At 0 O
0 1 0 O
=10 0 1 at (188)
0O 0 0 1

As can be seen from the open-loop plant design model integral feedback equations
(178) and (179), the tracking variables are the lateral position y and the roll angle . In
the case of the y-position, a linear combination of the position and velocity is used as
the error integral feedback. Furthermore, since the actual position and velocity are not
known, their estimates as obtained from the third order complementary filter are used in

the feedback loop; thus, the position tracking error is defined to be

9k — ver) + 509k — 9cx) (189)

while the bank angle error is simply the difference px — wck.
An error formulation of the type described in the previous section is used for the
design of the controller. The variables in which error terms are formed are the roll angle

o, the roll rate p, the lateral position y, the yaw angle ¢, and the lateral position and
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velocity estimates from the complementary filter. The yaw angle command used is the

desired track angle. With this definition of H in the error formulation Eq. (180) becomes

T =% — H 2 (190)

Tk+1 =¢,zk+1‘,uk+(1",+¢,H—H¢,)zk—Hg,,+wk+d, (191)

The error formulation of the open-loop plant model thus obtained is then used in
designing the feedforward and feedback control laws. Table 1 shows the feedback vector
and summarizes the structure of the controller. Table 2 shows the feedforward matrices
I'; and T’ which apply to the error formulation of the open-loop design model.

While the command design model is given by Eqs. (181) - (188), the on-line generation
of the actually commanded path is obtained using a more complex procedure. The lateral
trajectory followed by the aircraft may be divided into two portions: the localizer capture
path and the localizer. The localizer beam is assumed to be on the runway centerline.

Figure 2 shows the basic geometry of lateral maneuvers. When the controller is
engaged, the aircraft heading ,, is extended until it intersects the runway centerline
(hence the localizer) at zy. It is assumed that the initial aircraft position and heading
are such that the aircraft would intersect the runway centerline if the heading remained

constant. A new independent variable, R, is defined as follows.

R=(z—zj) cos%‘i +ysin% , (192)

As can be seen from Figure 2, R is measured along the bisector of the heading ¢, at the
localizer intercept point, zj; it is the position component of the aircraft along this bisector;
i.e., R is the distance between the localizer intercept point, z;, and the intersection of the
perpendicular to the bisector. The localizer capture command path is defined with R as

the independent variable.
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The command path prior to the initiation of the localizer capture mode simply follows
a straight line along the initial heading of 1,. The localizer capture path is commanded
when the capture criterion is satisfied, at R = R,. The localizer capture path is a smooth
curve with continuous first and second derivatives at both capture initiation and termi-
nation. At R = R, + P, the commanded localizer capture path smoothly transitions into
the straight-in localizer portion. The decrab mode is initiated when the decrab altitude is
reached and continues until touchdown.

Thus, the actual lateral command path is generated using the equations

(2—=zf)tany, , R< Roor JLOC =F
ve = { fo(R) s R<R<Ry+P (193)
0 , R>Ro+ P

Vesiny, , R<Ryor JLOC =F

ge={ Rfi(R) ,Ro<R<Ro+P (194)
0 , R>Ro+ P
o — 'l’o - . ¢0 oy —_ =2 .2
R—:ccos—2—+ysm7 , Voe=ViZ+y , (195)

where Vg is the estimated ground speed.

The smoothness of the localizer capture path is due to the selection of the functions

fo(R) and fi(R). Over the interval [- £, %], these functions are defined by

2
ol = JolRo) + 1y (Ra) (R — Ro) + 5 (R~ Ko)? ~ 457 ) (1+e08 ) (190

£(R) = fu(Ro) + A| (R - Ro) + - sin ZTF] (107)
f2(R)=4A (1 + cos 27;)R> , (198)
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where fo(Ro), fi{(Ro), Ro, P and A are arbitrary parameters. These parameters are
selected so as to satisfy the boundary conditions of continuity of the first and second
derivatives of fo(R), namely f;(R) and f2(R), at both ends of the interval [—% , i;-] with

the adjoining paths, resulting in

P=——sin— ) Ry = — sin — ) (199)

A 3 ? ) f1 (Ro) =2 sin —5— N (200)

A = —sgn(v,) |!7|m;z , (201)

where V; is the commanded airspeed and |§|mqez is the maximum inertial lateral accelera-
tion which will be required to track y, perfectly. Since |§|maz is a measure of the sharpness
of the capture and of the maximum bank angle required, it is left as a parameter to be
selected by the flight experimenter. When |§|maz is increased the localizer capture ma-
neuver will be engaged closer to the localizer and will be performed more quickly using a
higher bank angle.

The localizer capture criterion resulting from this trajectory is to engage the capture

mode when

2
(2 Vo sin 7“) (202)

is satisfied for the first time.
The commands for the roll angle, ., are chosen so as to produce a coordinated turn

when perfect tracking is achieved. The commanded track angle can be found to be

J1(R) cos %’-
Y. = tan™! , HR<R<Ry+P . (203)

1— fi(R) sin %‘1
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Accordingly, the commanded roll is selected to be

(Ve .
pe = tan™? <_g£¢c) . Pe = e (204)

When the decrab altitude is reached, the commanded roll angle is selected so as to

roll into the wind and perform a sideslip maneuver

Gek = Gq Py , Pck+1 = Pek + At Pk . (205)

The actual command vector used on-line is thus obtained using the set of equations
described above. On the other hand, the design of the control gains uses the command
design model given by Equations (181) - (184). Using the design models for the open-loop
plant and controller structure and the command trajectory, the feedback and feedforward
design for the lateral control law is obtained using the stochastic feedforward and output
feedback approach described in the previous section. The analysis and simulation results

will be described in the next section.

B. LONGITUDINAL CONTROL LAW DESIGN

The longitudinal control law design is performed following the same approach as the
lateral control law. Although the flight maneuvers performed in the longitudinal vertical
plane are different tila.n the lateral maneuvers, command path models similar to the lateral
capture can be used in the glideslope capture and flare maneuvers. As in the lateral case,
a longitudinal plant design model and a command design model are needed to obtain the

longitudinal control law.

Longitudinal Plant Design Model.
The plant design model is obtained by combining the aircraft’s longitudinal aerody-
namics and kinematics model with the control actuator and complementary filter models,

and then augmenting the resulting model with the controller model consisting of dynamic
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compensation, integral feedback and control rate models. An inner loop controller is not
included in the longitudinal open-loop plant model. However, dynamic models for the
vertical position and velocity estimates of the third order complementary filter and for the
elevator and engine dynamics are included.

The aircraft’s longitudinal aerodynamic model is obtained by linearizing the nonlinear

aircraft equations of motion ([16], {17]) about the desired flight condition. The resulting

equations are of the form

Vi=ayu V' +apw +a13q+a140+ann Wi + a2 W),

+ b1 6e+ 01267 + dy , (206)

W =az V' +axw +ax3q+azb+ayWy +aW,

+ b21 be + b22 6T + dw y (207)

d=as V' +azaw’ +azzq+azed+az Wy + a2 Wy,

+ bg; e + baa 6T + dq , (208)

6=q+ds , (209)

where V! is the normalized inertial speed of the aircraft e.g., w' the normalized velocity
along the body z-axis, g the pitch rate, 8 the pitch angle, Wy, and W|, the normalized wind
velocities along the x and z axes, respectively, de the elevator surface position, 6T the engine
thrust, dy, dy, dp and dy constants depending on the linearization point. The coefficients

ai; and b;; are constants depending on the aircraft stability and control derivatives (16],
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[17], [14]). The normalization factor for the affected variables is the aircraft’s nominal
airspeed, V,.

It should be noted that, due to the presence of the linearization constants dv, dy, d,
and dy, the state variables V/, W', ¢ and # are not the usual perturbations but the total
value of these variables.

The design model for the longitudinal wind velocity components Wy, and W/, is taken

to consist of first order dynamics in each of the velocity components. Thus,

Wi =—01W) +wy (210)
W, =-01W. 4w, , (211)

where wy and w,, are assumed to be independent white noise processes driving the wind
model.
The position of the aircraft c.g. along the Earth-fixed x and z axes can be obtained

from the kinematic equations. The general kinematic equations can be expressed as

z' = V¢ cos Y1 = V' cos 7y cos Yr , (212)

X

2 =-V'sin g , (213)

where V{ is the normalized ground speed, ¥r the track angle and ~ the flight path angle.
In the plant design model used here, the position along the Earth-fixed x-axis is taken
as the independent variable, and is not modeled as a state variable. Accordingly, the
expression for £ given in Eq. (212) is not a state equation. On the other hand, the vertical
position z is modeled as a state variable. After some manipulation, Eq. (213) can be

approximated in the form
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2 =cos Yow' —cos Y, 0 —siny, V' +d, , (214)

where v, is the nominal flight path angle.
The longitudinal controls used are the elevator surface position, e, and the engine

thrust, §T. The control actuator models used for design purposes are given by

10.76

¢ = —23.23 Se+ 2.0779 —————
6 = —23.23 fe + 2.0779 — 5.00237 Se. (215)
6T = —0.5 6T + 0.298 6th (216)
6th = —6th + 6th, (217)

where 6e. and §th, represent the commanded elevator and throttle positions, respectively,
and 6th the throttle position. The elevator actuator model includes the effect of cable
stretch due to aerodynamic loading on the surface. It is also important to note that the
engine dynamics are actually rather nonlinear, and respond faster when reducing thrust
than when increasing thrust. A linear approximation to the latter condition has been used
in the design model in Eq. (216). A 1 second time constant is used to model the throttle
servo dynamics. Rate limiting and other nonlinear effects are not included in the open-loop
plant design model..

The third order complementary filter is modeled by

2=08z—08%+2 (218)
2=04z—-042+ad, (219)
4, =-104, +10a, (220)
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d; =—10é, + 10a, (221)

where @, and @, are the filtered versions of the actual accelerations a, and a,, respectively.
As in the case of the lateral design model, a second order dynamic compensator is
included in the plant model; however, the design does not use dynamic compensator and

purposefully results in vanishingly small gains. The open-loop compensator model is shown

here for completeness.

Clk+1 = Uclk , (222)

C2k+1 = Uc2k ) (223)

where u.1x and u.2x are the compensator control variables.
To obtain a Type-1 system in the commanded variables, integral feedback of the error

in altitude and airspeed is included in the control structure as follows.

Ligyr = Ig + At(3, + 531, — 2zl — 52;) , (224)

Liyr =L+ At(V{+ Wy = V) (225)
where At is the sampling interval of the control law. Note that although the inertial
speed V' is not known, the sum (V' +W/) is the airspeed which is measured and therefore

available for feedback. V), here represents the normalized airspeed rather than inertial

speed command.

Finally, the design model uses a rate command structure for the control variables.

Thus,

beck+1 = beck + At uyk ’ (226)
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Sthexy1 = Sthey + At ugg , (227)

where u;x and uj; are the control variables of the open-loop plant design model thus
obtained.

When the continuous system model described by linear differential equations are dis-
cretized using the standard stochastic sampled-data formulation and the digital controller

model is added, the discrete plant design model of 20** order is obtained.

Tryp1 = 02Tk +Pzup + T2 Zx + wi +ds . (228)

To avoid confusing the vertical position variable, z, with the command state vector,

the latter is denoted by Z in Eq. (228) and in the following.

Longitudinal Command Design Model.

The longitudinal variables used in the design, as indicated by the error integral feed-
back variables in Eqgs. (224) and (225), are the airspeed and a linear combination of the
vertical position and its rate of change. Note that this linear combination may be inter-
preted as the predicted value of the vertical position in 5 seconds. Also recall that since
the Earth-fixed z-axis is defined positive downward, the vertical position, z, is the negative
of the c.g. altitude, h.

The longitudin;xl command model selected for designing the feedforward control gains

is the 2"¢ order system given by

Ziykpr =21kt (229)
Zoks1 =22k + 2k (230)
Zyyr =12+ . (231)
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The command state vector Zj corresponds to (2!, V)T, where 2/, is the normalized
vertical position command and V, is the normalized airspeed command.

An error formulation is also used in the longitudinal control law. Thus, error terms
are formed in the normalized vertical position, z, the complementary filtered estimate of
the vertical position, £, and the airspeed, V. With this definition of the matrix H, the

plant equations become

Ty =%y =H Z; (232)

Thr =@tk +Loup+ (T + ¢ H—Ho)Zx —Hee +wr +d,. . (233)

While the command design model given by Eqs. (229) and (230) are used to design the
feedforward control gains, the actually commanded path is obtained as follows. Initially,
the aircraft is assumed to be in level flight prior to the glideslope capture maneuver. The
initial altitude of the aircraft is maintained until the glideslope capture criterion is satisfied,
at which time the desired glideslope capture path is commanded. When the capture is
completed, the desired glideslope is the vertical path commanded until the flare initiation
criterion is satisfied. At that time, the altitude profile corresponding to the flare path is
commanded until touchdown.

The same functions fo, fi and f, which have been used in the lateral command path
generation are used in generating the glideslope capture and flare path. An important
characteristic of these paths is their smoothness. The independent variable used in the
longitudinal path command is the x-position of the aircraft c.g. in the Earth-fixed coor-
dinate frame. The commanded path is given here as the altitude, h, which corresponds
to the negative of the vertical position, z. Thus, the glideslope capture and flare vertical

profiles are generated using the basic form
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ho(z) = ho(zo) + hi(zo)(z — zo) + % Az — zo)z

—A(—Ii)z(l + cos M) , (234)

27 P

ha(z) = ha(zo) + 4 [(z ~z0) + 5 sin M] , (235)
ha(z) = A(l + cos ﬂ“%é_ﬂ) ) (236)

where zo corresponds to the initiation of the maneuver, and the constants are selected
according to whether the glideslope capture or flare maneuver is to be performed. The

altitude, sink rate and vertical acceleration are given by

h(z) =ho(z) ,  h(x)=zhi(z) , h(z)=22he(z)+Zhi(z) . (237)

The glideslope capture path starts from level flight and smoothly transitions to the
desired glideslope angle ygs. When the capture path starts at an altitude hgc and
requires a vertical acceleration no larger than Ilemu, the parameters of the path given by

Eqs. (234) - (235) are

|h|maz tangs
- _ tanes 238
Acc 2 V02 ) Pgc Acc ’ ( )
hec Pgc hee
=zgc = - =__"CGC 239
%o Fec tan vGS 2 ’ Az tan YGS > ( )
ho(zgc) =hcc hi(zgc) =0 (240)

Thus, when the aircraft is at an initial altitude hgc and must track the glideslope vgs

without exceeding lizlmu of vertical acceleration the vertical profile given by Eq. (234)

63



using the parameters in Egs. (238) - (240) will be denoted by hgc(z) = hocc(z), hice(z)
and hagc(z). It should be noted that the smoothness of the glideslope capture can be
easily adjusted by selecting the appropriate value for |iz|mu.

The criterion for initiating the glideslope capture can be expressed as follows. Com-
mand the path hogc(z) when the inequality

~ 2 P
2rtanygs — by < — 2325

tanygs (241)
is satisfied.* Here %, and hi are the current estimates of the aircraft’s x-position and
altitude.

For the flare maneuver, the constraints are placed at touchdown. It is desired that
the aircraft touch down at z;4 with a flight path angle v:4. Since flare must also initiate

on the glideslope, the parameters for the flare profile hp(z) are uniquely determined.

Ap = (tan vtd — tan '7GS)2 _ tan 4 — tanygs

= s P . 242
2(hta — ztatangs) ¥ AF (242)

P
ZTo = Tp = T3q — Pr , Az = —TF—IF , (243)
ho(zr) = zrtanqgs , hyi(zF) = tan~vgs . (244)

The flare initiation criterion resulting from this trajectory is to command the flare

path hp(z) when

hx < zptan~es +12.75 (245)

is satisfied for the first time. Note that the constant 12.75 allows for the fact that the

altitude of interest for touchdown is measured to the bottom of the wheels on the landing

*The glideslope capture criterion was later changed, replacing hi by ho(%x) to eliminate

a spike in the elevator.
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gear rather than the aircraft c.g.. The overall vertical profile of the commanded path

starting at level flight prior to glideslope capture until touchdown can be expressed as

hcc , T< zgC
h x Toc <z <zxgs =zcc + P
h(z) = fC( ) y Tge < GS Gec GC (246)
ztanygs , Tgs Sz < ZF
hF(z) ) szF
(0 y T< ZgC
hl(:r:) -y hlGC(fC) y Tec L z < rgs = zac + Pcc (247)
tanygs , Tgs Lz < ZF
L h1r(z) , T2 TR
I
(0 s TL Zge
h ) , Zec < r < zgs = zgc + P
ho(z) = | 2cc(z) cc s =zcc + Pcc (248)
0 » Zgs Sz < zp
 her(z) ,z2>zF

Recall that the sink rate and vertical acceleration can be easily obtained using Eq.
(237).

The airspeed command is generated as follows. Let V, be the commanded airspeed,
Vo the initial measured airspeed and V.x the airspeed commanded at the k** sample by the
command model. Since a sudden jump in airspeed is undesirable, any difference between
the initial and desired airspeeds, V, — f’o, is gradually eliminated starting with an initial

command equal to the actually measured airspeed.

Vc'k+1 = Vc’k + 2k ’ Vc'o = Vo’ ’ c’k = % (249)
o
- Vmaz . ' Vmaz
Cok = 39"’(Vo - Vo) Vo ’ lf‘l - Vckl > —Vo— (250)
1-V), , otherwise

where Va2 is the maximum acceleration or deceleration desired during the approach.
Thus, the commanded airspeed starts from the actual one and commands a constant

deceleration or acceleration until the desired airspeed command is reached.
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During flare, the airspeed command decelerates the aircraft for touchdown as long as
the airspeed remains above the minimum desirable airspeed Vy,;, Which is selected higher

than the stall speed and consistent with contingencies such as go-around maneuvers.

V’k + ¢2k V’k >V!.
Vc,k+1 — {Vc’ ’ Vc, g Vr:un (251)
min » Yek = "min
25 25
$ox — At VoTn s $2k+1 > —At VoT and Vclk > V"n‘-”
= 25 25
= At | Saker S —At g and Vi > Vi, (252)
0 3 Vc,k < Vrlnin

where T is the period of time in which a 25 ft/sec. decrease in airspeed will be commanded.
Thus, during flare the commanded airspeed is reduced to aid in the maneuver and in

touchdown as long as a safe speed of V,,;, is maintained.
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IV. ANALYSIS AND NONLINEAR SIMULATION

The lateral and longitudinal/vertical control laws designed use the open-loop plant
design models and the command design models described in the last section. The design
approach used is the Stochastic Feedforward/Output Feedback methodology described in
Section II. In this section, the design is analyzed by obtaining the closed-loop eigenvalues
and singular values, and by simulating the digital automatic landing system obtained to
control a nonlinear computer simulation of the ATOPS Research Vehicle, a B-737-100

aircraft.

A. CLOSED-LOOP SYSTEM ANALYSIS

The open-loop plant design models for the lateral and longitudinal /vertical dynamics
have been discussed in Section III. As can be seen by simple observation of the equations
making up the design models, both the lateral and longitudinal/vertical open-loop plants

can be expressed in the form

Thp1 = Pz Tk + Tz up +Ta Zp + Tk + wi + d; (253)

The lateral design model state consists of the twenty components:

{v’a DT P, ¢’ yla W:n 6A, 6R, &;, ﬁ’, ﬁ'a r1,72,Cy,C2, Ila Iz, 5Ac, 6Rc}

The control law structure is selected so that 13 out of the 20 lateral states are used
in the feedback. In particular, the actual aileron and rudder surface positions, the yaw
damper inner loop system states and the lateral wind velocity are not used for feedback,
although some of these are measured and available for use. The feedback vector for lateral

controller consists of
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{P, 7P, '/"’ &;p 37” y‘:" €1,C2, Il’ I2, 6Ac’ 5R¢}

The control vector consists of the aileron and rudder rate commands § A, and SR,
respectively. Integral feedback is used for errors in lateral position and roll angle. The lat-
eral control structure is summarized in Table 1. Table 2 summarizes the lateral command
model parameters needed in designing the feedforward control gains. Table 3 shows the
designed lateral gains for the feedforward and feedback control laws. The control gains in
Table 3 follow the terminology of Eq. (128).

It should be noted that the feedforward command state gain corresponds to the case
of error feedback. This is obtained inten@ionally to aid in steady state offset reduction. The
reasoning can be illustrated as follows. Suppose that the altitude and sink rate errors and
the airspeed error are null, and that the command system does not contemplate a maneu-
ver, then it is reasonable to maintain the control surfaces at their current position, since
changing the control commands to different values is likely to result in a non-zero error.
The same approach is used in both the lateral and longitudinal feedforward controllers.

Closing the loop with the feedback control gains given in Table 3 results in the closed-
loop discrete system. The s-domain equivalent eigenvalues of the closed-loop lateral system
are shown in Table 4. The singular values for the discrete plant with the loop broken at
the input is shown in Table 5.

The longitudinal/vertical design model state consists of the following twenty compo-

nents:

{V,’w’ q, 09 z',W{’aWz,m 6T: 53, 6th, &'z, &'z’ 2" é'cl »yC2, Ih I2’ 6thcp 53::}

The longitudinal feedback vector excludes some of the components of the state vector
such as the inertial speed in vertical body axis w’, the longitudinal and vertical wind

velocities, the true aircraft altitude, the engine thrust and the elevator surface position.
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On the other hand, the complementary filtered altitude (—2), sink rate and accelerations

are used by the controller, as can be seen by the feedback vector components

{V'a q, 0a a"z» &:p é’a z.lscla €2, Il’ I2’ 5thc, 5ec}

In the longitudinal/vertical control law, the commanded variables are predicted vertical
position and airspeed. Thus, the integral of the error in the predicted vertical position
and the airspeed are used in the feedback law. The throttle rate and elevator rate are, the
control components; however, as discussed in Section II C, the actual control commands
are the throttle and elevator positions 6th, and Se., respectively. The longitudinal/vertical
feedback control structure is summarized in Table 6.

The command design model parameters required for the feedforward control of the
longitudinal/vertical trajectory is summarized in Table 7. The gains designed for the
feedforward and feedback controllers are shown in Table 8.

Closing the loop with the output feedback gains obtained results in the closed-loop
equivalent s-domain eigenvalues shown in Table 9. The singular value, eigenvalue and Bode

plots of the closed-loop system are shown in Figure 4.

B. NONLINEAR SIMULATION

The performance of the digital automatic landing system described above is evaluated
in this part through a digital computer simulation. The ATOPS B-737-100 aerodynamics,
actuator systems, kinematics, servo, hydraulic and other systems have been simulated in
considerable detail in a nonlinear digital computer simulation. In this simulation, dynamic
systems such as the complementary filter, the yaw damper, the spoiler-aileron coupling,
the engine, etc. are modeled as nonlinear systems which accurately describe their actual
behavior rather than their linearized versions used in the open-loop plant model.

The digital automatic control system described in the preceding sections is simulated

in detail. The control law simulation is then interfaced with the aircraft simulation so that
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the control commands computed by the design become the input to the aircraft control
actuator systems. Numerous simulations of the closed-loop aircraft system were performed
under a variety of different conditions. The aircraft response in simulations are shown in

Figures 5 - 16.

The digital control system simulates the incremental implementation shown in Section
II. C Eqs. (129) - (133). While other incremental implementations are possible, they
are not used here. It should be noted that, since both lateral and longitudinal/vertical
controllers designed used a control rate structure, Eq. (133) is, in fact, implemented to
obtain the commands for the aileron, rudder, elevator and throttle positions. The actual

outputs of the control system are the control position commands 6.

The Boeing 737 aircraft used here has a baseline stabilizer automatic trim logic.
The auto-trim logic drives the stabilizer surface so as to minimize the moment on the
elevator hinge, thus providing maximum authority for the elevator to react to sudden
changes in the flight parameters. The stabilizer movement is much slower than that of
the elevator and does not introduce further dynamic modes in the models. The use of the
incremental implementation is very suitable to accommodate such slow moving surfaces.
In the nonlinear simulations of the automatic landing system designed here, the stabilizer
automatic trim logic is turned on; so that the stabilizer automatically trims the aircraft

even though the plots shown do not include the stabilizer position.

The control system iteration rate used in the simulation is 10 Hz which is also the
sampling rate used in the control law design. Since the control law is digital, this update
rate must be used for the controller simulation. However, the simulation of the aircraft
aerodynamic and on-board systems is performed at 20 Hz. Since these system describe
continuous processes with some modes of high natural frequency, their simulation requires
a higher update rate for accuracy. It is also important to note from Egs. (129) - (133)
that the control system output §; at time t; uses only variables available at time #;_;.

Therefore, as long as the real-time computation of the commands, 6k, require no more
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than 100 msecs, no computational delay will be present. It is assumed that a sufficiently
fast flight computer will be used to compute the incremental implementation commands.
Thus, the accuracy of the digital control system simulation is expected to be restricted
to round-off errors due to limitations in the word length of the flight computer, possible

mismatches in obtaining exactly a 10 Hz rate, input-output limitations, etc.

The feedforward and feedback control gains used in the simulation are given in Tables
3 and 8. The simulation of the actual commanded path shown by Eq. (132) in the
incremental implementation equations is performed as described in Section III. It should
be noted that the actual command model uses estimates of the position and of the velocity
of the aircraft c.g.. thus, the feedforward control law implementation actually contains
nonlinear feedback. The coupling is usually rather low and may be neglected. However, a
more complete evaluation should include these feedback effects as well as the effect of the

feedback control law.

The simulations shown in Figures 5 - 16 are initialized at an estimated altitude of
950 ft. At initialization, the aircraft is flying a constant altitude path with level wings
and a heading so as to intercept the localizer or the runway centerline at some point, z;.
The automatic landing system is engaged at the initialization of the simulation. At that
point, the control law checks to see whether the localizer glideslope capture criteria are
satisfied. The initial conditions have been selected so that neither the localizer nor the
glideslope capture criterion will be met at this point. Thus, according to the command
path generated, the aircraft continues along the same track angle with level wings and
maintains a constant altitude.

At initialization, the aircraft calibrated airspeed is selected to be 135 knots. On the
other hand, in most of the simulations, the commanded airspeed V, is 125 knots. Accord-
ingly, the control law experiences an instantaneous error of about 10 knots at initialization.
As described in Section III, the feedforward command model generates a linearly decreasing

airspeed profile from this initial speed to its commanded speed. As seen in the simulations,
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the aircraft decelerates, following the commanded airspeed, until V, is reached. When the
commanded airspeed V, is 135 knots, as shown in Figure 6, then the initial airspeed error
is zero, and the airspeed command is a constant value of V,. As can bee seen from Figure
6, the control law accurately maintains the commanded speed of 135 knots rather than

reducing it to 125 knots as it does when the commanded airspeed is 125 knots.

As the control law continually tests to see if the glideslope or localizer capture criteria
are satisfied, whether the glideslope or the localizer capture will be the first to engage
depends on the aircraft’s position, its heading relative to the runway centerline and the
commanded glideslope angle, with other parameters having generally a lesser effect. In
almost all the simulations shown here, one capture mode is engaged soon after the other,
so that the aircraft flight path is a curved 3D path in both the lateral and vertical planes.
Ability to perform both localizer and glideslope captures simultaneously is described in
order to achieve close-in captures, as it is no longer necessary to perform localizer capture

first and then engage the glideslope capture.

When the desired glideslope angle is 3°, the glideslope capture criterion is satisfied
first in most of the simulations. The initiation of the glideslope capture maneuvers can be
clearly seen in the commanded and actual sink rate plots. Both commanded and actual
sink rate smoothly transition from level flight to the sink rate required to remain on the
desired glideslope at the desired airspeed. Also note the pitch angle and angle of attack
movements during the glideslope capture maneuvers. Whereas the angles coincide when
ﬂying a constant altitude path, when glideslope capture is engaged automatically, the
control law smoothly pitches the aircraft down to capture the glideslope. Note that there
is no initial tendency to pitch in the “wrong” direction.

Also note that prior to glideslope capture, the pitch and angle of attack have to
increase slightly when the aircraft is decelerating in order to compensate for tﬁe reduction
of lift due to the airspeed, hence dynamic pressure, reduction. The needed extra lift is

obtained by pitching up and increasing the angle of attack, albeit with lag which results
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in a small altitude offset. On the other hand, when the aircraft does not decelerate, as
shown in Figure 6, the aircraft pitch and angle of attack remain essentially constant as it
is not necessary to obtain extra lift to maintain altitude.

It should be noted that since maneuvers are principally performed by the feedfor-
ward controller, the glideslope capture performance is an indication that the feedforward
controller is satisfactory for this type of maneuver. Observation of the throttle and eleva-
tor positions shows that the feedforward controller pitches down by initially lowering the
throttle rather than using the elevator. For the B-737 which has a thrust line considerably
lower than the c.g., reducing thrust has the added effect of reducing the pitching moment.
This control strategy is precisely the one that best suits this aircraft, since simply using
the elevator to pitch would have the unwanted result of increasing the airspeed. Thus, the
stochastic feedforward control approach is indeed making use of the plant design model

information as would be desired.

At the end of the glideslope capture, the altitude error is redefined causing an instan-
taneous move in its value. This causes a corresponding sudden and undesired transient
in the elevator and throttle commands when the altitude error move is appreciable. This
glitch can be removed in a number of ways, including the use of a simple easy-on function

at the appropriate time.

It should be noted that the smoothness of the glideslope capture maneuver and its du-
ration are directly related to the parameter |i|maz; i-e., the maximum vertical acceleration
of the commanded altitude profile. By simply varying this parameter at any time prior to
glideslope capture, the commanded capture path may be changed on-line to a smoother
or faster maneuver as desired.

In Figures 7 and 8, the automatic landing system captures steep glideslope of 4° and
4.5°, respectively. The glideslope capture path generated by the feedforward model given
in the previous section by Eqs. (234) - (248) is automatically modified to result in a vertical

profile which captures a steeper glideslope, tracks it and flares from this steeper glideslope.
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Since the same maximum vertical acceleration value is used for all glideslppe angles, it may
be noted that the duration of the steeper glideslope captures is slightly longer. However,
the basic characteristics of the response and of the control law remain unchanged.

It should also be noted that the feedforward and feedback control gains remain un-
changed while the commanded vertical path varies according to speed or glideslope angle.
Thus, the feedforward control law tracks the commanded path within the class of com-
manded trajectories. It is clear that if the commanded paths are sufficiently different
from each other, feedforward controllers adapted to the specific characteristics of each
path would result in “better” performance. One such approach would be to extend the
stochastic feedforward approach to include optimal gain scheduling.

In the simulation of the steep glideslope cases, it may be noted that glideslope capture
occurs later. This is a consequence of the geometry, as the initial aircraft altitude is the
same. In the case of the 4° glideslope both localizer and glideslope capture occur in the
same period of time. Localizer capture occurs mostly before the aircraft captures the
steeper 4.5° glideslope in part due to a larger localizer intercept angle of 47°. In all cases,
the control law captures the desired glideslope by satisfactorily tracking the commanded

capture path.

When the glideslope capture is performed, the aircraft tracks the desired glideslope
until the flare mode is engaged. As can be seen from the simulations of different glideslope
angles (i.e., Figures 5 - 8), the aircraft remains on the desired glideslope with essentially
the same precision for shallow and steep glideslopes.

The flare mode is engaged when the flare criterion in Eq. (245) is satisfied. In this
mode, both the flare vertical profile generated as well as the airspeed reduction profile are
commanded. As can be seen from the simulations, the aircraft pitches up increasing its
angle of attack and the lift as desired; this results in a corresponding reduction in the sink
rate and the airspeed until touchdown. This is achieved by using the elevator to pitch up

while lowering the throttle to reduce the airspeed.
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It can be seen that in all cases, the pitch angle at touchdown is comfortable above
zero and still rising. This pitch attitude at touchdown is necessary to avoid landing on the

nose wheel which is not designed for the high load at touchdown.

As the flare maneuver is significantly sharper than the glideslope capture maneuver,
it requires faster control action. Thus, the measurement noise covariance, Vg, for the
command model forcing vector was reduced to obtain the flare gains, resulting in a higher
forcing vector gain, K., during flare as shown in Table 8. Due to the complexity of the
flare maneuver and the high accuracy needed in tracking the altitude profile, a higher order

altitude command model would model this profile more accurately.

The localizer capture for a 3° glideslope and localizer intercept angle of 32°, as shown
in Figure 5, is initiated near the end of the glideslope capture maneuver. As can be seen
from the heading and roll plots, the aircraft yaw and roll angles track their commanded
trajectories closely and capture the localizer. The lateral position is also seen to track its
commanded profile accurately. Although a small deviation from the localizer is present,
this does not resemble a usual overshoot pattern as it occurs after reaching the localizer.
In all cases, this offset is quite small and tends not to exceed 3 m. As in the case of
the glideslope capture, the high accuracy of the tracking of the lateral position indicates
that the stochastic feedforward controller can produce satisfactory feedforward control law
designs.

During the maneuver, the roll angle and the lateral position commands are selected
so as to produce a coordinated turn when perfect tracking occurs. The sideslip angle plots
indicate that the sideslip angle remains well within 1° of sideslip during the whole final
approach excluding, of course, the decrab maneuver shown in Figure 14. The maximum
sideslip tends to occur during localizer capture slightly after the peak bank angle. On the
other hand, note that the lateral acceleration is plotted on the same set of axes and follows
the roll angle quite closely, as expected during a coordinated turn, whereas the lateral

specific force in the body axes remains near zero in a coordinated turn.
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The smoothness and duration of the localizer capture path command can be varied
by varying the maximum commanded lateral acceleration |§|;az. This maximum acceler-
ation is set to 10 ft/sec? in most of the simulations shown. However, Figure 10 shows a
simulation where |{i|maz is set to a value of 5 ft/sec. Observation of the lateral variables
shows that the localizer capture is smoother, lasts longer, requires a lower maximum roll
angle to capture as well as resulting in a lower maximum lateral acceleration as expected.
The turn coordination, although acceptable for |§|maz value of 10, appears to be improved
as indicated by a lower maximum sideslip angle. The tracking of the lateral position also
shows some improvement. Thus, the feedforward control law can clearly track lateral com-
mand paths where the lateral acceleration does not exceed 10 ft/sec? with no change in
the feedforward control gains.

A number of simulations are shown in Figures 5 - 16 where the sensitivity of the
automatic landing system to various parameters is shown. For example, the aircraft weight
is varied among 85,000 1bs, 90,000 lbs, and 95,000 lbs. The center of gravity of the aircraft
is also varied in tandem with the weight. Figures 13 - 16 shows the sensitivity to winds
and noise including bias errors. The wind gust standard deviation used in the simulations
containing gusts is 2 ft/sec. (0.61 m/sec.). The airspeed command is varied between 125

and 135 knots, while the commanded glideslope angles simulated are 3°, 4° and 4.5°.
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V. CONCLUSIONS AND RECOMMENDATIONS

In this study, a combined stochastic feedforward /feedback control design methodology
is developed, and a digital automatic landing system is designed using this approach. It
is considered that the main objective of a control law is to enable the plant to track a
desired or commanded trajectory selected from a given class of trajectories as closely as
possible in the presence of random and deterministic disturbances and despite uncertainties
about the plant. The feedforward controller tries to track the desired or commanded
trajectory, whereas the feedback controller tries to maintain the plant state near the desired
trajectory despite the presence of random, and possibly deterministic, disturbances and
uncertainties about the plant. Modern control theory has concentrated more attention
on the important feedback control problem, while the feedforward control problem has
received less attention.

The feedforward control problem is formulated as a stochastic output feedback prob-
lem where the plant contains unstable and uncontrollable modes. As the standard output
feedback algorithm requires an initial gain which stabilizes the plant, a new algorithm is
developed to obtain the feedforward control gains. The necessary conditions are shown to
result in coupled linear matrix equations, implying that when a solution exists, it is indeed
the globally optimal control gain.

The formulation of the feedforward problem in a stochastic, rather than the standard
deterministic, setting is significant in two ways. First, the class of desired trajectories
from which the actually commanded path is selected can be effectively described as a
random process generated by a dynamical system driven by a white noise process. The
second, and more important, implication of a stochastic optimization formulation is the
tacit understanding that “perfect tracking” is often not possible due to various reasons

including uncertainties about, or variation in the, plant parameters, the presence of plant
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nonlinearities and unmatched initial conditions. Thus, questions about the robustness and

sensitivity of the feedforward controller arise naturally in this context.

A combined stochastic feedforward/feedback control methodology is developed where
the main objectives of the feedforward and fee&back control laws are clearly seen. Fur-
thermore, the inclusion of error integral feedback, dynamic compensation, rate command
control structure, etc. is an integral element of the methodology. Another advantage
of the methodology is the flexibility that a variety of feedback control design techniques
with arbitrary structures may be employed to obtain the feedback controller; these include
stochastic output feedback, multi-configuration control, decentralized control or frequency
and classical control methods.

Finally, a specific incremental implementation is recommended for the combined feed-
forward /feedback controller. Some advantages of this digital implementation are the sim-
plicity of implementation, the fact that trim values are not needed and that problems
such as integrator wind-up can be largely avoided. The closed-loop eigenvalues using this
implementation are shown to contain the designed closed-loop eigenvalues which would re-
sult if an incremental implementation were not used. It is further shown that when using
an incremental implementation, it is advantageous to design the controller with as many
integrators as the number of controls. Using fewer integrators results in marginally stable
eigenvalues of unity, while using more integrators constrains the placement of eigenvalues.
The choice of the same number of integrators as controls is also an intuitively pleasing one.

A digital automatic landing system for the ATOPS Research Vehicle (a Boeing 737-
100) is designed using the stochastic feedforward controller and stochastic output feedback.
The system control modes include localizer and glideslope capture, localizer and glideslope
track, crab, decrab and flare. Using the recommended incremental implementation, the
control laws are simulated on a digital computer and interfaced with a nonlinear digital
simulation of the aircraft and its systems.

In this study, the feedforward controller takes an equal place along the feedback con-
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troller in achieving the overall control objective. While the stochastic feedforward/feedback
approach has been successfully developed and applied to a significant problem, some signif-
icant questions and extensions of the problem remain unanswered, and are recommended
for further study and experimentation. Three general areas of study are worthy of further
investigation:

e the structure of the feedforward controller

e the robustness and sensitivity of the feedforward controller

e optimal gain scheduling of the feedforward controller

The structure of the feedback controller considers questions about the role of feedfor-
ward dynamic compensation, the use of the “future values of the desired trajectory” in the
current control command, the use of the full-state feedforward controller when fast flight
computers are available. An argument can be effectively made.that since a pilot knows
the future desired trajectory and uses this information in his current control commands,
the optimal feedforward controller should also take advantage of such information.

The uncertainties about complex system parameters and nonlinear effects bring forth
uncertainties about the trajectory which would be tracked when the actual plant parameter
are different than those used in the feedforward design. Since the feedforward controller
does not determine the stability of the closed-loop plant, instability does not generally
result from such mismatching. However, since unsatisfactory performance would generally
result from a high sensitive feedforward law, it is of interest to study measures of robustness
and design methods which incorporate low sensitivity criteria.

In applications where the plant will vary over a wide range of conditions resulting in
large changes in plant model parameters, or in cases where the command model parameter
vary to achieve some objective, it is necessary to adapt the feedforward control gains
according to varying conditions. This can be achieved by extending the optimal gain
scheduling studies to include feedforward controller. Due to the relative simplicity of the

coupled linear necessary conditions, gain scheduling with respect to all the plant parameters
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rather than a selected few may be feasible. In particular, the feedforward gain of the

command model forcing vector seems extremely appropriate for such application.

80




10.

11.

REFERENCES

Ogata, K., Modern Control Engineering, Prentice-Hall, Englewood Cliffs, New Jersey,
1970.

. Schultz, D. G. and J. L. Melsa, State Functions and Linear Control Systems, McGraw-

Hill, New York, 1967.

Anderson, B. D. O. and J. B. Moore, Linear Optimal Control, Prentice-Hall, Engle-

wood Cliffs, New Jersey, 1971.

Kwakernaak, H. and R. Sivan, Linear Optimal Control Systems, John Wiley & Sons,

Inc., New York, 1972.

Kailath, T., Linear Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

. O’Brien, M. J. and J. R. Broussard, “Feedforward Control to Track the Output of a

Forced Model”, The 17th IEEE Conference on Decision and Control, San Diego, CA,
January 1979.

Halyo, N., “Development of a Digital Automatic Control Law for Steep Glideslope
Capture and Flare”, NASA CR-2834, June 1977.

Halyo, N. and R. E. Foulkes, “On the Quadratic Sampled-Data Regulator with Un-
stable Random Disturbances”, IEEE SMC Cos. Proc. 1974 International Conf. on
Syst., Man and Cybern., October 1974.

Broussard, J. R., “Extensions to PIFCGT: Multirate Output Feedback and Optimal
Disturbance Suppression”, NASA CR-3968, March 1986.

Maybeck, P. S., Stochastic Models, Estimation and Control, Vol. 3, Academic Press,

New York, 1982.
Halyo, N. and J. R. Broussard, “A Convergent Algorithm for the Stochastic Infinite-
Time Discrete Optimal Output Feedback Problem”, Proc. 1981 Joint Auto. Control

Conference, Charlottesville, VA, June 1981.

81



82

12.

13.

14.

15.

16.

17.

18.

19.

Halyo, N. and J. R. Broussard, “Investigation, Development, and Application of Opti-
mal Output Feedback Theory, Volume I - A Convergent Algorithm for the Stochastic
Infinite-Time Discrete Optimal Output Feedback Problem”, NASA CR-3828, August
1984.

Halyo, N. and J. R. Broussard, “Algorithms for Output Feedback, Multiple Model and
Decentralized Control Problems”, NASA Aircraft Controls Research - 1983, NAéA
CP-2296, October 25-27, 1983.

Halyo, N., “Flight Tests of the Digital Integrated Automatic Landing System
(DIALS)”, NASA CR-3859, December 1984.

Hueschen, R. M., “The Design, Development, and Flight Testing of a Modern-Control-
Designed Autoland System”, American Control Conference, Boston, Massachusetts,
June 1985.

Etkin, B., Dynamics of Atmospheric Flight, John Wiley & Sons, Inc., New York, 1972.

Roskam, J., Flight Dynamics of Rigid and Elastic Airplanes, Parts I & II, Roskam

Aviation and Engineering Corp., 519 Boulder, Lawrence, KS, 1972.

Broussard, J. R. and S. T. Stallman, “Modification and Verification of an ACSL
Simulation of the ATOPS B-737 Research Aircraft”, NASA CR-166049, February
1983.

Halyo, N. and A K. Caglayan, “A Separation Theorem for the Stochastic Sampled-
Data LQG Problem”, International J. of Control, Vol. 23, No. 2, February 1976, pp.
237-244.




‘h —ah:lf

(is+78) —(fg+,8):T :SHOLVEDIALNI

Yo °yve : STOYINOD

QY9 Y ‘I ‘%o ‘ot A8 ip ‘e ‘b td : IOVEqdadd

i O A A B BC R

BB e Ve M D id A : SALVLS

dINLONYLS TOULNOD TVHILV'I

T UTdVL

83



84

TABLE 2

LATERAL FEEDFORWARD DESIGN MODEL
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TABLE 4.

LATERAL EQUIVALENT s-DOMAIN EIGENVALUES

DAMPING NATURAL
REAL IMAGINARY RATIO FREQUENCY

S Wn
-30.528 10.231 0.948 32.197
-30.528 -10.231
-10.309 0.000 _— —
- 5.919 0.000 _— _—
- 5.000 0.000 _— _—
- 5.000 0.000 _— —
- 2.991 2.565 0.759 3.940
- 2.991 - 2.565
- 1.813 0.000 —_— —_——
- 1.298 2.206 0.507 2.560
- 1.298 - 2.206
- 0.400 0.399 0.708 0.565
- 0.400 - 0.399
- 0.320 0.383 0.641 0.499
- 0.320 - 0.383
- 0.221 0.159 0.812 0.272
- 0.221 - 0.159
- 0.101 0.000 _— ———
- 0.100 0.000 _— —
- 0.045 0.000 _— ——




$%S€0° - | 0G6S8° 000°2T1 Pv¥SL°€ ¥2GLS° L 000°T
9T0%0° 9TL60°T 02T°6 L6¥89°€ 8CE6¥ " L 216"
TEVET" 690%€°T 8T€°8 90.02°€ y9¥2¥v° L 2€8"
16LE2"° ¥228G°T 98G° L $6L,90°2 L2E6S"° L 6SL"
1069¢"° 6S9T18°T 6T6°9 1L€GS2" 08€50°8 269°
1921G° 960%0°2 0TE"9 09190°2~ | £€G2€L°8 1€9°
L%089" eL¥62° 2 ¥GL°S €L96S ¥~ | 29G6G6G°6 GLG"®
T0L98" 968SV°2 8%2°S 80808°9- | 062L¥°0T G298
G2690°T 6T969°2 98L" ¥ 668G8°L— | ¥62S¥°TT 6LY"
06282°1T 9T068°2 G9¢8° ¥ 9TG8Y°L— | GE8LY 2T LEY®
€6206°T 69G6%0°€ 186°'€ P¥96€£°9- | 022%G°€T 86¢°
S6T2L°T 968%2° € 1€9°¢ €0TLO°S- | 26%%9°¥T €9¢"°
0LVE6°T 91G9% "€ ITE€°€ 906¥8°€- | T6T6L ST 18"
v6%€1°2 68T0L°€ 020°€¢ 66¥€L°2-| 06T66°9T A1
I¥81€°2 ¥2v96°¢ ¥6L°2 L6E2L " T- | $L6G2°8T 5.2
0gesy 2 G6GG2' ¥ 216°2 T€€08° - | 6¥S6G°6T 162"
LEOE9 2 L98LG " ¥ 162°2 ¥TLEOQ"® 6%€20°12 622"
LG29L°2 €0286° ¥ 680°2 8L£08° €V16G°22 682"
62¥88°2 L9ETE" S G06°T €¥00S° T 9€68T° V2 T6T°
98000°€ ¥L8T1L°S 8EL°T 0T0ET" 2 ELVV6°GC YLT®
€08T1°€ ¥98€1°9 G8G°'T €2969°2 $8128° L3 8ST°
981%2°€ 198GG6°9 SY¥°T 19€02°€ ¥5128° 632 SYT°
L6bLE € ¥¥56°9 8TE°T GG8G69°¢ SYIV6°TE 2eT1"’
9%8TG" € 08882° L 202°'T 2.L890°¥ 2S9LT°¥¢E 021"
2v689°¢€ 6ETTIC" L 960°T 0068L"¥ LTIE96 °8E 00T"
(ga) Jdas/avy (ga) ods/avy

SANTVA IVINONIS XONINOEJL SANTVA JIVINODNIS XONINOTIA

(z)9 + I - SIINVEINISIA FAILIAAY
LOdNI 1LV NIM0odd doOo1
TIAOWN LNVId FLIFAISIA

S ATdVL

SANTVA AVTINDNIS TVIILV'I

87



A‘ZStE :SYOLVYDIINI  *

°29 439 : STOULNOD °

939 ‘oy3g ‘T II ‘%o ‘Ta ‘g ‘7 ‘¥p ‘Tp Yy ‘b¢,A $OVHaUdA ¢

°ag ‘19 ¢f ‘1] ‘%2 ‘T

‘g ‘g “Up ‘Tp ‘Y19 ‘99 19 TM TM 7 ‘0 D P A FSALVIS ¢

FINLONELS TOTLNOD TVOILLYIA/TVNIANLIONOT

9 HTHV.L

88




TABLE 7

LONGITUDINAL/VERTICAL FEEDFORWARD DESIGN MODEL
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LONGITUDINAL EQUIVALENT s-DOMAIN EIGENVALUES

TABLE 9.

DAMPING NATURAL
REAL IMAGINARY RA?IO FREQUENCY
-42.9 0.000 —— ___
-29.9 0.000 ——— e
-10.0 0.000 -— _—
- 8.4 0.000 - ___
- 6.4 0.000 _— .
- 6.4 0.000 - _—
- 1.79 3.3 0.477 3.754
- 1.79 - 3.3

- 0.97 0.000 - —
- 0.70 0.000 _— -—
- 0.42 0.27 0.841 0.499
- 0.42 - 0.27

- 0.40 0.000 —_—- -—
- 0.37 0.67 0.483 0.765
- 0.37 - 0.67

- 0.2 0.000 ——— _———
- 0.2 0.000 - -
- 0.10 0.088 0.751 0.133
- 0.10 - 0.088

- 0.095 0.000 -— —

91




NVEDVIA JD00Td JOOT-AISOTID TVNOILONAJ T TINDILI

Wy §
¥3ITI04INOD
e\ CUEED
AL
| waLsas |
door-yawi| | | ... i |
)
AL WILSAS " SLNANI
— INV1d INVWHOD 4r|.||“ ANVWWOD
H

43114 je—

43TI041INOD ddYMY04a53d

92




Aoa ..oHv

X4LAWOAD HLVd TVHALVT " TdNDId

A
o
didd R

<
ﬂ%:.:..a+

(4

o

(4

—ussfi —— 800 =Y

o

soo(Iz—z)=Y4

3



XALAWNOID HIVA TVOILYIA/TVNIANIIONOT ¢ TENDII

pil ~ —priz dIdD

HIVd \

- AMK |

Id4071SAAITDO

qodyy
TVOILYI A

(*2)

HLVd
dYNLAVD
ddO1SAAITD

AoN .QHV

94



TIAAT VAS = LHSOIAH ‘30p 0¥ = SAV'IA
‘@op ¢ - = L ‘39 ¢ZT LV NDOISAA TOULNOD
JO SISATVNY ANTVA AVINONIS ANV ANTVANIOIA ‘eF TdNDIA

(oFs/avy) AONINOIYI

(0T 00T ;-01
ITTT T 1T 1 - [T 71 T 0e-
| —01-
%98/pe1 0% LV €GP 2°S- N o
N
ANTVA VINONIS WANININ / 0 O
— — 01
I I Y I ITERREAN L 0c

(ap) STNTVA HVINDNIS

SHONVEUNLSIA FAILIAAY ©
LNdNI TOYLNOD LV NIN0Y¥4d SI dO0OT ®

95



TIAAT VAS = LHSOIAH ‘39p 0¥ = SAV'IA
‘Bop ¢ - = L ‘3 SZT IV NDISTA TOUILNOD
J0 SISATVNY ANIVA HVINONIS ANV ANTVANIADIIA qF TANDIL

(o@s/avyd) AONINDIYA

101 00T 1-07
rtrre 1 1 1 | _______ ! ] 0c-

29s/pe1 ') IV €P 0'- 1 /luo

ANTVANTOIE WANININ /
O

I T T T O I | ] ______

(gp) SENTVANIDIZ

SHONVHINLSIA HAILIAAY °
LAdINI TOULNOD LV NIMOYYL SI dOOT ®

96



%9s/pe1 0z LV dP L2-
NIDYVI NIVD
%9s/pel 41°0 LV 39p g¢
NIDIVI SVHd

SNOILIANOD LHODITI HNVS
NDISTA TOYLNOD 40 LOTd IdOod *d% TdNDId

(pas/avd) xoNANOTYL

il

09E-MTTT T T T 1
o 0Le- |—
o
2 081~ —
o
)

0 NN Lo 1 02

N3IJO 400T H'TLLOYH.L

97




%s/pe1 g9 LV 4P OI-
NIDIVIN NIVD
%9s/pe1 ¢'g LV 3op 6¥
NIDIVIN ISVHd

SNOILILIANOD LHOITI HVS
NDISEd TOYINOD 40 LOTd IaOod ‘P¥ TUNODIA

(ods/ava) AONANdIYI

07 60T 1-01
09e-[TTTT T T T 1 [TTT7 71 I 02-
o)
vumDm.Nl ~—— IDH|
. Q
3 =
L d —o1 8
0 L 4 \\J\;muow

NIJO dOOT HOLVAWTH

98




SAT000'S8 = LM o28— = Ip ‘SILMSZTI = °N ‘68— = SO

NOILVINNIS YVINIINON ‘&8 TUNDIA

Q 3) ML '
[ 1] -1k} 00% (] (] oL (] [ ] ] .3 02 (1] 0 .
—|1~ 1) — LR _ L I L] — LI _ LI _ LI —1—1& 1 — LELBR! — L SR ] — T 1T 1 — T V1 — TTT D—nm
~N
//Dl 28
. o 2
—_———0————0———- -0 ”‘?(\’IT'IIIO."I m
o
lnltalmllllollllllnllll- e ———f—— — —— — — — O~ ——3] &
(3 3) MIL o1 @
(-]} o1 001 o6 08 0L 09 s []] of 02 ()]
—|-|- d\ﬂ— — LB _ LI _ LELEL — L — T 11 _ LI} ~ rri _ LI —1—1- i — TT1U |0 ™
1 3
/ —_———f———O——— s O — O — 1 g
- —— e e e ~eoB— -
G— o— o— o o —— ll“fm
13
v ucm -1
hand Q3) ML —J0°6
(4] a1t ot (] 08 aL 0d 05 Oh 13 02 91
___J_W—-___—-_—_‘q-—_-_——- ——_____—_—_——___—__.——__Io—n
4 R
e—————————— —_ —_ 2
\ ~ O — O~ /@’ P U ]
— — e e (Y
————f—— B — - " — G ~— 4 8
<7 a
o] .
o 8 (3'8) ML -
(4] 011 ()] [ 08 0L 08 (1] ok [[3 02 [1]
—ﬁ————---—~————--—1_‘— ______——___\J_‘_J-d\iq——_—-—lc—lm
.
\?ll'ﬁll'loll‘u G T P e (e et T, . -
7 o = z
— — e (e T e d N
-4 @
ovwyertn .
o~ Q 3) ML —Jos
[ 4] ot . 001 - 06 [ ol 08 05 [L] 06 02 (1] 0
— LR L _ 1 ¥ — 1 — LI — LI _ T — L — LBRIR _ T _w— | IR L _ Tt 1 — i —lm
N 13
/TII"QIIII!D'-.II.I-" lQI'Ilu""@""llD‘ hnm
—
l‘”ﬁ”".ﬂ @
oo -
- m Q' S) MIL —Js
(4] o1t 001 o 00 0L 08 08 (L] L3 02 [1] 0
— LIS — LR _ LI — LR B — L] — LIS — LIS — LB _ LR L — LR L) — LI — T T | jost-
-1
4 A
- . . S S N
/// 7 w
.l’.“m ///Ul 7
//l 05t

99




SHT000°S8 = LM o28— = Ip ‘ST G2 =°N ‘of— =S5

‘NOILV'INNWIS AVANIINON ‘498 TdNdI1d

1930) ST0YINGD

1930} ONIOSM (S/14) BAY
1930} 1763018

(930) To¥

W a

Bﬂ.w.:.
[ ] (1§} - 1] oL 08 [ 01 (]
_I-JI_.I_.Jo..l._.J..___.______1____________._____.__ 3
Ll ¢ SRS lﬂ“"lll‘nw\l‘nlhmynlﬂl\““@\‘lll?'lnm"’l o
o 8 a3s) w1l o8
021 ot 001 [ oL 08 ok 02 [
_J|_|q|_|]|_|.—l_.___._.____.__-.___.-___.______.___._E
——— G e IIOIIII-III@““M”NO’I\“W““""O&!I‘_FHVI o
n/..\\
._.:.m 38 ML s L loo-
[ —
____________________ﬁ______\_\JlJ?—L_ d..h“q...._.l_»...*: ST ok
||Q.|)Ill iolllloll\\c\ —j0
L 21 2] -
wtd - 184 Cum_!:. 1
-] [11] 001 oL [ ok [ 02 01
_\.u__-.__a_._____4____________._________________8_,
= — G —— l?]‘”@“ln/ n'|°In“u,~nu.hye
/o/\ ]
i 35) ML —oe
021 11} 001 [3 08 o s ] g2 bl [
_lﬂ________]_____Jl_\_____.._______._._..________"S_
———— —— .‘Dﬂn“"”@""/./ lyn
-
18 i 2381 M1 oo
001 (] []

02 at
-__-1_—-—_

|M10Io.||~ !?ll'?l"@“l%,tqh”VI’laTl‘l o

- \ .

(/) 10004
100




61" = "D’ ‘SH'T000°96 = LM ‘028~ = I ‘SLIM S€T = °11 ‘€~ = 8§D

‘NOILVINNIS YVINIINON °“®9 THdNDIA

oSy

(-]} [ 143 001 0 (] o [ ] [ ] [ 3 [ ] [ 1] 0
LI NLJLJLAS WL L N L L L e L A LB B N B B NE A ._.m
N _ . 3
— e Qe s O e . =0 — T e e —— W
v B— - SR o— + B e e e e e — —B— o e e G — —=] R
o Q5) uIL o1 @

o021 ott 001 0 [ oL [ ] [ ] (1] [ 02 T [1] T ee
L TT T T 1T 11 LA LRSS LR LI L L rvyrryrya ™
i | N/_|l _||_I .._...li_ |||_| _nl.l./_ | ] m
/...||I..O'||||.||0|...|I.|0||||0||‘,’W“““"®"" S 1 21
™m
~N
3

suTuoML
el Q8] AL
ot [ 9

A3 D) (1] o1

0°¢
[~]] 00t L3 L 02 0 .
ja__Ju._________.._________~_-___________a-____c_
o— o— 8
—_——— —_ —_———— e e O————— o
“\illm.l..lnl|u|l|a|.ln'l»‘:l@.ll.\”?.llllo.lll a
.-ll...lm
s GK) ML oF
o021 ott [ 1] (13 08 oL 0 03 ok [ 02 (1] 0
—1—-_-—___—_—_————_—AT—\—_—————__—_—1_\_—_-—_1__-o—l
\‘II?IIITI'."@“‘]"TI” m
IOI,II'lnYll (O]
@
QIIA_..m
Lo G38) ML ot
[ 1] ot 00t (3 (L) 0L L] 05 (1] o6 02 (1) ]
—|-\1q 1] _1-\d 1 — L — UL _ L — resv — TTT _ L — LB _.~ LI _ 1 ]‘— T T 7T |8
3
@
N 3
e G e e e (G v e G e e e G e s e (e e e e G e |
o m
= ©238) ML ad
o2t [11] 001 L] o0 04 09 (2] 0h [ 02 [1] 0
LI L LI LI I | LB LERER I L LI T T LI =
! ] ] 1 ] ] ] ] ] I prerper e
<1 A
—-= © —— ¢ et « T V- - o E
— hd -
~ .
!'.-i.m o ]
Caal /, -t

101



61° = "D'0 ‘SHT000°G66 = LM oZ8— =Ip‘SILISET =°N ‘06— = 8D
NOILVINNIS AVANIINON ‘99 TUNDOIL

. T 0X) M
[ 1] ¥ 001 [ oL ol [ [ [3 02 01 0

]
_|_.I_|_|_.|._I._I.|_|...___.___.._..-__...._n._._.-1__________.n.".

[=]
2
..Hﬂ_ﬂm 0Q3) ML ol
021 [ 00t [ [} oL 0% [ ok [ 02 ot . d+e.z
T T T [ TTT LI S N N N A I B N O N N S S S A B S RO R R | -
{ I ] ] i | | ] | i ] | i @
- > o
m
1, 38
Il'.l?lll?‘ln‘” —— —— e (e e e e gl T
D/{\\ - Wm
-1 ©
o2 anm oot % et e — fryl
00 — —
______________________q___ i Jw._lJrl_la.”-
e 1 A
. 1 2
e D - S . S —o 7
. ] e
-El.u.tm Q39 MIL —Jos
1 [ 001 [ 00 [ 09 08 oh [ 02 01 0
_______._____.-_______-_______________________e-
1E
Illn'ﬂl'l"@“‘h” e s s G e s e A =~ S ) m
/o/ \Q\ 1l e
e ﬂ\ -
™ 1333) ML o
21 011 00t 06 [ (13 09 05 oh € . 9 0 [
_‘.__——__—.—.______—__ﬁ____—_—_—___—ﬂ———-____.__s-u
1 «<
I"ll?"”"@""l/ -0
u R
1 8 aw_u_:/ oot
021 [ 001 08 00 oL [ 08 oh 06 02 01
_.._______________._.____._/_____4-___________n..
u'lulﬂllllllnulolll'@n‘l Ol‘k”m"’llllv‘ll,cm
13
8 e

102




SAT000°S8 = LM o28— =1 ‘SIIMSZTI =’ ‘ob— = SO

‘NOILVINNIS YVINITINON ‘e TdNdDId

=] _U_:.

_|J|_.J|.—|_I._l._|_]_|_-lq|_.J.l.—l.—|_|j|1.—I4|_l_..-._.J_T__.ﬂ—-_ﬂ_._.__..2

w :
{4
/o\..l|||o|..l|.|oq..||l\, N —— o ——O——— — . _] m
w
i.euﬂ.mlll.n.lll.lml.lll! B — O e e mom e G ] R
- _ CHET ..2 2
(113
—‘]J}-—{ﬂ—-————A—‘——‘—d\—__ ——u————d},——-_-———-‘——-—\ w
\ — e s e s e e (G e e \n,/ m
— e e e O e O — O —
OI Q— o— /I’wulllllwn]l‘l ‘l/w.—u
wre 8 a3 ML
o—_ 00t ne oL 08 0% °
—|——,— “_m— -1—\_——1_\—___——. _n_uw__—A‘~_—1_—_—._—d—— *
\\mllntllu.|||.lmll||\ |n\\|.|.lal.||l..|n|.||ll.n.| (A
.......im @ $) L
(18} 09 oL 0
T [ ¢ T T T i1 LI LI LEREEA LR L R B} P T yY1rrya
_Iﬂ 1 4 _ | I J I _ _ _ _
\\ol.l.lloll.||o|||' =~ m
~Ne—————0——— == 3
w
Crvtaen lu
oo 1 §) WL
o2 [11] 00t [ L3 98 oh
—|—‘———__J——_~—_—I_\———_—__lm_——m—u—m- -—_—1—\—_-1————1_\
Q

m
/all..lnlnl.l..l..lw.hllnnuurl..llual..l w 3
==
= 8

2 S) ML [
021 [11} 001 06 [ 09 08 (1] [ 03 -8—-
ﬂ_____]__.d___._._____ _.____.J-__.____.__.JW_.J
] L
— O N - O oo e e e (e e e e (s o - m
— 9 < -, o =
/ -
~B—
ol-v“w // us-

103



SHT000°68 = LM o28— = Ip ‘SIMSZL = °N ‘ob— =8O

‘NOILLVINNIS AVINIINON ‘9L ddaNOId

Q38) ML
021 o1t (] o ) ot [ [ (] a1

_|-4.__.__.___HJJL—JI._.I_I_.‘..J_W__._.4~__..._1_~4|._T.-._~._

——— e e e e e e e O /?lhl\\w -0 ——f
o 8
hodind Bm- W:._.
021 011 001 [ 3 oL (1] [.L]

-4
-

=10
<

1930) SI0OUINDD

-

_|_.I—I_I_I_J|_|._J_____.__.__.-_d.__._.____._______T-_.._

—— e o IIU.Ill'l‘W““””O’ “m“"""vlllm“vll
G
Al
el m Qx8) uIL
021 ot Lot % 03

_.-—_—__"u“_—_.

—————— |o||..||o|||\\n\

g L

o ia_l_l_x__cl'_l_l_n..]!,
(930) NI

111

(;s/14) 8AY
1930 41753018

0

Lt a4
£

°L1_.1_1_L:_.1_L__
a -]
930) 108

GufutZ.
[} _o:_ T 8—_ (] []] oL 08 [1] .3
[TTT7] -______._._____.________ﬁ__._______J____
-_——— — — IOIIIA@“A/ 'Ilﬂlﬂlulﬁu.“l
7
auTey =
ou (a8 ML
— _e:_ — T .un_ ; _au T _2. 2] 0s (1] 01
T T e

____g_______jjma_\l_

——— G s e |Tn""@u’l‘"/

/

E"Y
m _uum. w::.
[1]] .3 [ ] oL 08 [1]) 2 (1]

. .
] °© 8
) a

—__-___—_#___qu_-_——#__-_A______—___-_——___-_dl

IN»OI.].I |..D.I.|||uI?IkrThMVTII|O|II|IPYI‘I

- \

N A
(S/M) 1000

104




SET000°S8 = LM ol¥b— =Ip ‘SLHSZI =°N §'%— =SD
INOILVTINNIS AHVANIINON ‘8 TdNOIA

BB_ ML
o « (2] [} [

__4._..._._7._.__._...._|._|_l _...J_.._._..1
\

\

——— T S~ T —

uln.tﬁrmlI||D|..I.I.|n||.|.ln||..||o||l|n|..l||.n|||

02/37108i1 43  (930) STOMINGD SNOT

n:n_u::. ot
as (3 02 [1]
jljl—l]Jl_JlﬂJJqulqjljl__-_._‘_.__-quli—.JI]JJljle
llu.||l|||0lnll.ln\..lll B
e e —— G .. IB/'lI I —_——— _—
N =TT,
.S..i:m -
Gd-uz: 0’
[ 4] 11} 00t 3 o0 a9 08 [1] [1]
__“_______W_AA______J_H_______d_.._____d.______2
\.IO'I"OI'II — . lﬂ..e m
‘0‘.“
\\l?ll'ﬂ'lllﬂ.’\\ - ’.l-l"”@“‘l-llllﬂll" 4 o
..l.l:.lm -1
s _um.u::. _Jou
1] o1t 001 oL 0s ]

—-J—w——.-— __\.ﬁ.u-_—-—_—l.—‘-l-—-\d-—-a\a\—ﬁ;—-—-_—-_-——_—0—
O e — g =,
/ ~,

(S/K) 1004

O~ g = —— G =a{o

!!l...m

P#Ju::.
02t 011 001 " o [ oh
[T ___.___q__qd___.__~__.___.d._._J_.-.___._q_
m
/ITIIITI"”vlnn“WI"Q ——— —_ m
== amad ¢
._”mm emIL “
__—_______..____AJd-J_Iﬂl.ﬂ
.y.
s~ o o o o ———g , 2
~~o e -
~o.. 3
//
=8
Po—— /pl/ 033

105



SHT000°S8 = LM olF— = I ‘SLM ST = °N ‘o9'¥y— = §D

‘NOLLVTINWNIS dVINIINON 98 TdNSId

Q3) M
] (1] 001 % ] oL ) (] [} ®« a 01 (]

_IJ|JJ_I111—|4.________._.\_.___-1JJJ|_|J|14|1|11|_J|4||_J oz-

[ LT

ol'Tllcl?lll?ln‘Olln”,DUIln“I\Im“\u,-

1930) SUINDD

..l..ﬂm
03) 1L t
[ o1 [
_Iﬂd___-.ﬂ___d.T._.J.__..__d.__._ﬂ__qq__.._._____ﬁ-
3
11
e s e e e =B o e G e e ey _ (e o= pm ey FE
."//0' \m“ S5
(= S (in
(1]
—== = -
a8 258} Il =5 02
ott 0L ! 08 \ﬂ [}
_|1J_ﬁ~__j___________,___-___.__\\_____4__.___ os-
e G e+ e G e e (e e e e G = o
8
Btm
ik - 154 Q3S) MiL L3
o021 ot 01 [ o 0 02

__.__.__ﬁl___.___.___q.___.___.._.ﬂuql._..ﬂ____le__lul_lmon.

™
-———— |o||..||ol.ﬂ“|ol/ \m\vln\.l =y m
N m 8
=7
~m= 8 (a3s) 1L = o
021 °: 09 [ 0s [ 02 0
[T ___.al_____Wﬁ_.__jd_..___d__d_._..____d__ o01-
<
lII?l'u'?l'lﬂ"””@"”/ 0 ?
u»m ) 00t
-] (1] 001 [3 (1) 0L Gmeu::. as [1] []
_____.__A .4_____+-4_._._.|1ﬂ__-J- I._J €=
3
)

=g \ :

106




SET100068 = LM ol¥— = I ‘ST ST = °N1 ‘o€~ = 8D

INOILVINNIS HVANIINON ‘86 dd1OId

Qos) U.:.
o2t oft 1]

~

N\

,I.O.|||\llo..‘llII.!O')!.\-I-IO'-I.!‘\.\.%:III‘IOIII."O'I

alil'lﬂlll‘@ll‘ lDI..InIII-D'IIlI'DIInI.III.u\lfl
o Q _m_ 3WIL
'

jl..lﬂljl.ljﬂ...-..j-~j_.4lﬂ.qJ*i_._-.J_.«Iﬂ_ 4J~_ﬁwn_

m
/. g e O e e =G e e O

STh——————————O—— — - -O— —— — —O— —_———

L 2l
a Ga. u_._=
021 o1t cot [73 9% oL 08 ._

ﬂ.ﬁ__.___j.__-_ﬁ_._j ..I_.qulﬂl_._.__._d__j__ﬁ__-.lw

o ——
Sy e — ———— g

§ 23
Zn 8 ) 1L
[11] 0o 02 (1}

—_J_—_______—-__1—-_I—J_w———_-i\w—__-J—~j——fﬂ--u0—
——— e O ——— O — =G ——— ‘

g 8 218) MIL
o2t otl 00t [ e 1] 05 oh

—_—____—_Iﬂ___ﬂ__ﬁ‘__-ﬂ j—-———-__~1———j——J—_——
G —— G e s = e B
7 N —— =

03/31103‘1 ¥d3 (9ﬂ1 STOYINDD M\

$3390

(S/H) 100H

—H_.—l_w._—lq__—___—d__1_|-d____J‘—-_-—.ﬁ_——f—‘d—————j
h Y m
S-S SRS S S 93
G— ———fo 75
s
8 ) ML
[ 4] o1t [13 0s
——_.—-w—_—-___-_-_—-‘—\J-A-‘——.A_‘_____-J—\___j—]—_-—_ a_l
]
- Y p—— 1. 2
=—o- s s a— ~0— o =
- S 1 =
~—— -3
- O o

107



SHT000°S8 = LM ol¥— =Ip ‘ST SZI = ° ‘o€— =8O

‘NOLILVIOWIS AVANITNON ‘96 TUNDII

ot ox) U:..

_____au__ __—____-_-—_udlﬂ-__._-___—-—___-_]‘—_-_B

|'|r||0_|l|.|.|l0,||||°|I"‘D-llln”yn"“nﬁln"l. -

= 8

19301 SI0VINDD

Gumgu::. |.|8
021 011 [ a 05 on o 0
_..._____ _-_____d_.__.___.____._________77___.8
- w
- >
4]
—
lll?ll.I?ll"?ll'?ﬂ”l?l‘“ﬁ"“”AUVIVQ \Wﬂ“
o — . Hlum
=8 sem=m==e===, °
_u_z 8
021 01t 001 [ 0L = " 0s \ﬂ 02 i
[T T _._________..__-A__..."\\-._-_-_TT__,
\\ - R
- - m
c————————— G ————— —0 F
- R
2]
i Dumn u::. - %
021 out 001 o6 o 05 o "o
[TTT ] TTT] -.__-_______._______.__.____._jl__JJﬁ
- »
-'l’QIll-'QI'I'lOI"“I'? -~ ] Uhyo m
~ \m\ -
~ - B
- 0”«\\ -
Tww
021 ot o o _umm_u::. os o¢ =
[T ___ ___.___d___..._44___d___d4_____JT_d__n:
n'lOlIlulQ"llllO""””@””n/ —_0 \M
4 £
R
8 -
Gwm-u::. - ot
021 ot1 001 [ o0 oL [ 06 02 0 0
[TTT] 7T _._____4_________.____A______d_q__..n
oNIQ»III'-IOIl.I:I..OII'IIO"IIh@“ Eaf—— e — Jmeeg
- (3
P
>

—8 \

l, I W |

108




e=XVINAQAX ‘6T ="D'0 ‘SHT000°66 = LM ‘08— =IA‘SIISZTI =N "‘e— =8O

‘NOILV'IONWIS HVINIINON "80T HdNDIA

(3) ML

o2t |11} 004 % [ ] (3 [ [ ] o % @ at []
JI._.J_._..__A___._J__.-____c.-
\ : m
/Fl — , &
_————0——— —0— IIlO\/ﬁ\?//OuIIlIII»OIII{ m
E.nﬁ..@lllﬂlll.lﬂ.l'l|ID|II||.|DI|||||IID|I||I|Q..|I| R
€138) JIL o1 @
021 ot 00! [ [1] oL 09 08 [1) (1] 02 [} 4
[T 7 _________._______q.____44___ﬂ4.___4-_._.__|om
— e e B e e [ e e e e e e e O N e 1 z
- — —— -
O.I.||||I.O|II|IOI.|I.IIIlOlIIIIIOI\lIllI.OI..OI””” ”Un._w
. m
~
4 8
.s..:!.m ~
ot 1138) 3UIL ~30°6
-]} [11] 00t 06 00 oL [1) 0s oh [ 02 o1 0
_.___]___d.________—qq_______.____._._____-~._2
1 8
QlllllllOllIlll.Olllllloll’lnlol\l\) ..\lha m
“Tlll?ll'?lllDI..llIU\/\\V@!;n'II.IID - .|. @
Illl.lm IHu_

.-lln:. SH.LE:.
ot 09

o2t 001 (13 [1] oL [ oh .3 02 ]
_.l_.JI._.|_||]|_|l_||_JJI_|_I._.JI~|~|_|_|_JJJ|_ﬂﬂ___________..________2.

N X
o o oo _ ] &
. rlnll.IIOIn“’lo M
-4 @
I!i._..m .
som 1J35) L o
o2t otl 001 [13 [1) 0L [1) [} [1] [T 02 [ 0
_|__.__.___~.____ﬁAA.__‘_4_._1__.._44__.q4_-______H
) - o
. D
N - w
/Q IIIID.IIIIlIOII"IQIlI'I.IIﬂOIﬂ-’IIIQ’ -IRM
“”#”V] @
—owm m -
o 1338) MIL s
021 [11] 001 [ (1] oL 09 . [ [1] [ (3] o1 0
_____ﬁ-___.________4._|_J~__.ﬂ4____44-_.]___-____8..

M1 LHIITH

109



§=XVWAJA 6I' =00 ‘SAT000'S6 = LM ‘o28— = Ip ‘ST SZI = °n ‘.6~ = §D

‘NOLLV'INIS AVINIINON °q90T TIdNDIA

: (= 3} !:
a_ ;_: 8 2. 3 ._.

~IﬂJ|_|~|~|_|_I._..4___..._._q______._~...___.__.___d

.'0"‘%"?“‘1””"? ?\‘n\ll?lln B

csam § mw:

im : W
souniy Gwm_w_:.
02 ot 00 00 oL [1] oh T T
TT 7 Tr vt 111 LR LR EREE B LR TrTr 7
______.__‘ _ | i _ | 1 _ ~ _ @
: wm
J— — — | [ — —— —— e el ““"@”“Il F o
o= o= == B MM
a
o8 0%) ;11
[:+]] olt 08 [J4 09 08 LP.II" |l.e
_+4__-|14a_____-_____q_._.__\p\u\.d._\_J_l_l._LmJ.I_‘l_.lal_x Iﬂﬁ.
9 &
\\a\ {8
<G — - — oG — — —G— — —o &
18
Lol . =
...o:: _uuf u._:. Iaﬂ
—____ Al_l_4a____1__._I_Ja___________.JA__ﬂA__.A__.WR-
B
B & e © L NpE—— W o s (. S e e Gu.hyo -
I// \O\\l ] R
= =" 4 @
“m=8 Q) L I.a
02! on 2.
_.____4|7___._._~_____.__d4__l_q________~___.,___ 8
<
.IQ-'].,'IOIII'II?I/ W
rm /VA
ot 03 ML o
_.4__._.___4_-_41______4__ _ﬁﬂ__q_________.___
/ o
m o
V‘Tll —_———— g — g B g m
) %
e ]

\




SET000°06 = LM o26— = Ip ‘SLISTI =°N ‘o€~ = SO

‘NOLLVINIIS YVANIINON °‘®IT TU4NDIL

Q3 ML
023 (1] pot [ ] ) oL .' [ ) o [ (] o1 0
__.__._.__-4_____d~4—jt___.._..V..—_._d_____AJ___u_o..
\ g
/ 2
o— o 3
. —— . - IIIO‘/\)IO.I...IIIIII.O’II 2
(7]
-+ — O — — —@———:- -O——— e — — —F— — — —— —— R
0 3) MU o1 @
021 ot1 001 % 09 oL 1) [ oh [ 02 1] 0
______._._____.__.q_qIT_____1~|____ﬂ_.___...__-dom
\.fnl e
’/ —_——Cf————fO——— O " —_ 1l 3
T ————— o — —. -olln.llolffnlofo/”HHmH”Uﬁm
]38
oTuten -1
o 33l _os
2t (11 001 [ 08 0L (] 03 0h [ 2 01
nq-___..__.__".._1ﬁq_4d______d___d__j__________a_
1 B
O e e = O e e Qe e B -_ —° AR
~O0— Q= ~ ~ ey
i i it i s SRS
4 Y
32 MU m €58 ML uo_
021 o011 00t o [T} oL 09 os oh [ 02 o1 []
_I_.__._._d__________4|7___________._~.~_.____._E-
“\T|||T|I|O|I‘uuﬂ\nn"0|||y/ m
r'IlllDIl" 0 I
e
ﬁs.l...m
o 13 3) ML o1
021 3l 00t [ 08 a 3 05 oh ® 02 o1 0
[Tt jvirjvirjrrrjryrrprr __.____.______._._qdq_.__|_3
* 2
Glllal..lﬂ’llllﬁ.ll"fl@llllﬂ"@"llllln —_— m.m
”W”” @
oo m
e 3163 UL St
021 o1t 001 (13 [1] oL 09 0 o6 [ 02 o1 0
_._._-d___-ﬂ_.____.__JIT____ﬁ_ﬂ-_____-______d.__8.-
A
- 2
LN =1
~G_ =
~— =

8

111



SHT000°06 = LM ‘28— = Ip ‘ST SZI =° ‘o8— =8O

NOILVINNIS HVINIINON ‘qIT §aNoIid

' 0“.!: o o
_.I_I_I_.I—I_I_JI._.J._JJJJ.JI_..__._.q-dJ_W_.Ja_....___._.u.L_.._. o2-
g
R
2]
l‘l
m Guw_u::. [ ]
1) 0
jjqj]jjjjjjlj_ T 7 _ T 11 _ T 1 T joz-
w
36
- e e e ma IOII'IIO“‘”’OIII\“W“H"I"“?'IIIMNUY ° \u.l..l_“
N~ P
Em €
02t o_.”:. 001 0% .-zu_.: ! >
frrrprrrp ™
A
8
-G —— IQlI.IIIlQIl'.I\\Q\ s M
lu.tm @
el - 10 aum.u::. L
(1] o011 001 [ [T 08 of 01 0
n___ﬂq____4________4+1_~_.____________.____ 02-
- 4
- — ITll‘"ﬂl@“h/ n““ID"UI-I’_ ] () m
/o/ o
..\
== Dum.uEr o3
oit [ 09 oL a6 o2 )] 0
__._________q_ﬂ___ﬁ_______._Tq______ rryvri oot~
<
a'?l'.lﬂ""""@"!l// 0 g
Hm -u.d“u—:
021 [11] 0ot 06 [, ] 0L 08 [1] 02 0

(,S/n) Lo00H

00t
[TrTrTT] ..___________.___A__.__1___q.___4|__ﬁ-_n
-N.OI|||.lQl.IIIl@ll"@“l%’?\q“”v,l|=|lmo

s

-z § /

112




61" ="D'0 ‘SET00096 = LM ‘028~ = I ‘SLI 92T =°N] €~ = S§D

INOILVTIANIS AVINIINON ‘82T TUNDId

Q3 3L
02t oi1 [} o

- o8 [} ) [ ] [ [ 0 ot
____._.J_..Iﬂ_I_rq.__._.J.JJd_A._._._.._._

T .._ -
\ é
/of g

——— g — e e e T e TN — g — O | .W

(2]

.tanm.||||_u||||l.n||||| ..nT..l..I|_u.I|I|.ln||l||lnTl||| o]

o2 [11] Q3 -U.:. ' e

___.____.________._J_I_.Jl___._____.___.___._._._. m
/

—_——g————f———— =B —— — O 3
—~ T T T T T T e —p—],
o— o— == 2
Sm Qs -u::.
o2t [ 11 001 (13 (] [ 08
| S - T A Y LR A O DL B LS LI _.___-_______.___
| i ] | | ] 4 1 | i | 1
, 8
Qe e e e G e e e (P e e ——— | e A
-— o— I\DII..“.....’I ™
“nlllloll"?ul’ lm"l.lllm\\li\\\l@,l“ Lid
.qu:.lm
Q m-u..:.
o2 [11] 001 (3 (1] oL 08 ok

___._.______..______________.__._4_____._.___.a

u“?lllﬂ'lll@lln I.Tﬂ’l?..‘y/ W
L« S S—— ST 2
@
2“! m un_u::.
4._._______.____ __._d_._____ ._.__B
71 | ] | | i _ | { | _ i
18
/Ollll.loll.lnl.oul.l:nl R« e i - o L AP S lﬂm
———
@””' 2
-2 8 0s) M1 u
ozt [113 01 (<] oL [ ] . [ - [} —— T -3-
q.___._-.q._._d ._.._.___ L -
{ | | | | | | ] _ | | _ J
1 &
.Nm a . O~ A e e O |o 2
//IUI ” S
-I...“m ) //IUI Jom
~— -

113



61" = "D'D ‘SHT000°96 = LM ‘o28— = Ip ‘ST 92T = °N ‘o€~ = SO

‘NOLLVINIS YVANITNON °9ZT JdNDId

- Bum-u.:. o
7a________._._._a.q____._J.JI_.I—I_I._JI_IqJJI_JJJJ.JI_Iql_I_I_. 5-3
2
P SN .
R
2
ql.im
[
ott [ Dufw.:. 08 ]
ﬂd_______ .___.__._-_______.J_.__.._r._._.q._aJl._Jaq_Lﬁ. .
- 25
-
D/l\\ l\m
T 15
N i
621 E“.nm 001 % aum..u.uz: 9 o .llba
_.___-_—__m._____________\11_ﬁ.l_l__l..__nﬂl_n_l_#um_h_lq{ﬂ-
7 ]
<1 &
- 18
—g—— e —O—— e — e —o F
- -
4 R
Q
mTid 035) ML T
ot 3 oL [ [ 3 0 01
___._____ __"____q_____._.4__________..._______. oz-
1 F
IQ’"'T'I"@‘A/ Q\I'lonln"ll-llhu.hye -

iy M

[} ) 03 s Ok 0 02 1 Ila

__.___._____...~_____..__-_-________.__._a_-__o_:
P S Y ' ab = — |”c =
// 1 B

%8 cw_w:/ —om

(1] 001 [ 08 0L [1] [ ] [:1] 08 ot

_._______ ._-d4_______.___ﬂAﬁ____._._____1AJ___-nn
.“n?l'.l?lll?l"@“\ll ’tqh,mvlll;ll"’o W
>

- \ 4

114




'08s/147 =S LSNAD ‘6T°'="D'0‘SAT000'96 = LM ‘o2& — = Ip ‘SITMSZI =°0 ‘€ — = SD

‘NOLLVTIANIS YVINIINON ‘BeT HUNDIA

._:.
021 o1 o0t [ o [ 0 -8! L] ok [ (] o1
—J_w __ -_J _w. _ -_- _ __- _ _- _ __ _ ___ _ -__ A -- — -u — —_4 _ d-—

\

“ O TN =
0/(/41{\((9\/\/\\/.)\3\/\11(: N. 4 -\ — /)0(\)!/\.\;/)0\.!(/-/\(4

11
a

<

e B —— @ . O~ e =B — — — [ —— —

Q 3) I —_

o2 att 00t 06 (1] oL uou 9% Oh L3 02 01 0

-__\-/a~_—-—.—__‘——~\1ﬁ-___ ___.—_—-_‘A_\—————-———-———-n

I -\ )\J\P\ \/\)\l..%./l. BEg's W N ~N H
0/)]!\)\0(!\(\/.(3/!\' lnvl\(\\l.l/.\\m).[ -

(3 o
- - g
02/3110841 843  (930) STOUINOD SN0

~~
\\.}./mD A swgle
N

19 3) uIL [
4] [H] 201 38 99 1A 3 9 R ch 3¢ 02 a1 c
_._."__A.W___.f1___.__m,4 |I_._~._.___...m...—._4‘J-ﬁ.a al-
-
1 B
-—10
\Q’/(\Q\ll{))\@"l/. IQ-\\/.!.}I\Q[I\)\UDJrill e = ™) m
\\.H}\..s/r(..)\n[\\/;x\r.l,h\lr:(.\(. (nw,\:/\z.\ull\ni/\)\. ~ —~r ]
20w -1
------ m -U m—u:—h .}
[ 4] (1} 00t % 09 13 o8 [2] (1] 06 02 (1] 0
_—__~—~__-_______—_4_J|-\__]—1_‘1-—__—._—____4——_—n—-
1 |
\-D‘d‘\?"'\?l"" H@b"l'ﬂ‘l‘\” m
- /?}“Ipolhh 0 m
]
Jteubein
aom 13 €0 3UIL 01
021 o1t 01 ¥ 30 a 19 P oh % 02 0l 0
—.u____.'_"«__~.—_.,__11.-‘_\m.._—."_A_—~A__i—‘__..ujﬂ~__".+mm
3
N ~—— ——- ~ 2
?ﬂl«lﬂa@vﬂ‘l&fk@.ﬂl’l I?,ulblloln’nqﬂnﬂ.lnr.ll? 2%
=5 T
w0
= m S ML $¢
o2t ot oot o ] oL 09 ) 05 0% [[3 02 81 ]
—~._—-~__q-——.-—_‘——_j\——d‘——__—_u_____-__d——__.Om—l
1 M
. 1 8
3 —r 5 Pt sl F R S GY S e e T O =
— . -
~ ] 3
——
S—
Lol e 1
.‘.-I.m U/// _lost

115



'038/14% = dS LSND ‘6T ="D'D ‘SAT000°S6 = LM ‘08€ — = I ‘SLM 81 = ° ‘o€ - = SO

‘NOILVINWIS ASVAINIINON 'qeT TdNDOId

”1 8i1 1] r [ 00 [ DH“.!: [+ [} [ 02 o1 0
_.I_I_I_I_l_l_l_.l_J T T 17T T T T LI -
I T T AJI]JW..___.___..____.ﬂ___LB...
4 ¢
-4 3
R L .hwv..l!AunvoL\.A”o/nvlla \@V..\..!l.loﬁ.ln..lnumflkvo g
== ©
1 s
l...ﬂ.._um 38 ML Tu
621 o1l 001 06 0% oL [1] 0s ok [ 02 at o
__.____._a_.._______.__._______.________4__~J____8-
4
- - —EE S s o (A D P 7] um
B> —C e Lo e e e =S = G S o o ey
N 13
.-m
un =Y ]
ezt an e % " w JM ) i sy
[T T ™ D D B M S My B S : T SR -
1 i | I i ' A R Y L\
e 1 &
= —— |n.,||‘||nw|||llln\K no Ww
0 &
18
T 1338) 3UIL T
a__ : _2_ 00! 0% 09 0 s 03 oh % 02 9l .Imﬂ
_ _ LI — LI} _ LR _ LI _ LRI _ LI _ LI _ LIRS _ L) _ T _ 71,0
) -1 2
-4 #
\\ 1 8
Lnum £338) M i
02 _n.: oK 09 9 ) 25 28 0§ 02 0 |o2
_.._m.._A______,“._.____..mm..u_.._g.n___‘____lAnnT
\ ]
— — — 5
G E o - hl@’lﬂ”yj —° B
rm ]
. .
(
021 it 001 [ 08 0 uww”.uc:/r [ [} [ o
LR Ty T 2 L )
— ~ — — LI _ LI _ T T7 _ T T3 m LELBL) _ LI m LA I | _ LI _ LI =

e i N N

\

L_I_L_I_gl_l_l_”
- (.8/m) LoaaH

1930) 41763018

116




SATO000°S8 = LM 022 =AM ‘SLMOT=SM 28— =T ‘SLIMSZI =°1 ‘€~ =8D

NOILVTINWIS AVANIINON "e7T TUNDIA

Q3 ML
021 ot 001 [

[, I [} (] (] oh [ a2 ot 0
—.____.Jﬂ___.__.___..L_I_I1_.qd__.____.______-__.|12.m
\o _ ~ . g
s s e G e e e (G = O e e — O\ IOI'\III(IIIOIII’I m
|.!...ﬁrm|lllnlllllnllllu..Ulllllﬂl.ll.l-lﬂlllnlﬂlll' ]
Q3) 3l o o
021 011 001 [ 1] aL ) 1] .1} [ [} [}] 0
_______|ﬂ__________q.__.Iql._.Jl_l_l_.I_.Jl_l_ljl_l_I.l_.l_.JJJl_|_|._]_|nnB
N\ 13
O ——— O e e G —— e - [ e e G N e 3
-~ e e ————— . e —_—— e g——]
O~ o— o— o— Qo " —C lllllollum_w
4 2
4 8
ST/TUmSIL -
o Q31 ML —i0°6
4] ot1 S0t [ L] oL 09 08 [1] L33 02 q1
 EBLENLIL I T L T L I N L N NN IR O DL BN B L L L L L B o
o— o— o— o o— 1 8
— — e — — — = = —— e e T S =
“\lﬂl'llﬂllllllﬂll'“IUI|I|||I|U\(\\.V@'|||||I = -1 M
.a..ctlm -
0w S} ML —Jor
[ ] [14] 001 (] [ ] 0L [ 1] 0s oh 0t 02 (1] 0
_...___|Tﬂ_.___.._.d_____.j__._____—..__.______o_-
\V?n'l'ﬂll"ﬁ“lnvol"lol" ” m
Vg -~ -
rllllo.l"’lo N
4 @
S in -
fo ) 3uIL o o
021 01 00! 06 08 0L 09 [} L) % 02 [1} []
_____.qa____________.__._____-_.__.___________ﬂda
N 3
/TI!I?I'IT"»lTIh”@""' am
?‘"”W’ @

=

n...m
- 3 €) 3L S¢
02 ott [ ]] o [ o ) 0§ 0”2 [

1) (.3 [1]
_d.___.____.__..__ﬂﬂ___|_.|]|_|._._.__...____________8.-

- O
4
o ™ —

1 LHITH

iz 8

117



SHT000°68 = LM o221 =AM ‘SIMOT=SM ‘028 — =Tp ‘ST STT =°1 ‘o€ — = SO

‘NOLLVINNIS YVANIINON °‘9FT JUNDIA

Q) ML

o2l o

....__ 001 [ ) 2.. ' .8 ] [1) [ 02 -

T 17 TT | T 17 LI T 1 _Jl_l_.lqldl_l_.JljJJlﬁJlj -

_ LA RRANRARN RERERARE T
A 12
/lmll O o O e e o (e 2 o o e g

hﬂnm [z -3 0 1) § G %

o2t o1t 00t [ 00 oL 09 05 _.e_.___..nq__z_A 2__...8-

 SLILILI THLINL I AL e L L L A L L [ [ I 77 1w

- &u
/.A b n_,m
P - S l@'ll.“u\:OA’llO\\\\lll"@"H“"v"ll“‘i’o m.)u
~— o 1 °R

w8 038) MIL o

021 [41] cot (17 09
—___ _...

_-__ _,__m.

~ &
e g g
e S - S —; o7
w :
[2]
w8 0%) ML o;
o2t (113 00t 06 00 0l (1] as 0h ot 02 Q1 [
—__//__._.—.j__________«_—____—__—j-—_—_—_j____lﬁun

AN

E)
1 8
\-/FIII |°‘”Vhy \“VTBIIO“““’:"RV.O ..”
N \K 18

!n,:!m =z -

~ Q38) UL —Jo

ot ol 001 [ N (13 09 05 ok 06 02 01 0
—__—d-_f—\_ ___d__—~.—.__—m__.—-.__q___-_-—_—j T 17 1 Jon-
<
VVQ‘I‘IHHHWHH”H",?/ ° g

%8 /

021 o1t 001 ot 00

_wﬁ_ ML
0L 09 0s [:L] [13 02

llllllll

-]

/

a4

—-————-J—j—-————-—-——-—-———_—I—J——__—_n__wluﬂ———- -
IIhVOI)Il-'.IQI"I?!‘”“IHM"IOI&qh“mv.l.lll..r‘v.o

-
L1
"

['Illl

\

118




SASION ‘61' = "D'0‘SHT000°S6 = LM ‘02— = IP‘SIMSCI=°1‘—=8SD
INOILVTINNIS YVINITINON °eST ZU4NOIA

_ﬂ_U_:.

1] [ 001 o8 00. 0L (] ot o [1] []
_ﬂ_/)________.jlq_lﬂleJﬁ__..__.___-._q-__._.qqdqlc.-w
ANV &><§55 o 2
./\Pt&«;\.{%}\ eyt VINMAWLAS ‘4,05:\.;‘?1(%?:} 8
TRl e — e e e §
021 ott 001 0L 0 [3 02 o
—__\_/____—_________.__._.__.__.-_____________ﬁ__u..om
L VB~ AA N AN\ An A SaS (( H 7
L m
1 8
B 035) 1L Il.o -
02t ol 001 [ 09 oL 0 1)
__.___.____~____m_.____ﬂﬁ_____.________ﬂ_..___._ o.
R
—_— o &
OO N O e gV a —~—] 8
v ——~—
i:.n..m Bfu::.
071 o1t 001 [ 03 0L 0s [
________..____~44__.______.___AA—_uﬂ_________dA~ 2
“VID'I'LIIQ‘\"?I‘"“-QI&”I%\hy/ W
[ SN, B4 S =
2]
..lm :um_unz.

021 [ 1} 001 [ oL (4] []]

____—__-_—___—_.—-\a-—-q_—_._______—____——4-____

(CIH) syl

/nllu.lalmlnlllnTlll.l —O————— =TT

.I/@”
"% 3

:umvy.:.
o2t 1] 00t [ (] 04 03 oh [ [2] 01
_._____._____.-ﬁ_________.__._.Jwﬁa__._______.___._87
L
SN o a —C— Ilnr.llw/.ll!)\.\.\l)llnv.\ll»lrl.. M
~—0 © - e T 2
~— -1
O _ 4
—
= 8 /0/// Ton

119



SHSION ‘6

NOILLVTINNIS VUINITINON "qST ddNdDId

DU. ML

I'="D'0‘SET000°96 = LM ‘028 — = Ip‘SLI 921 = °N) ‘o€ — = SO

__.___.._-_.._._..._._.__.__._JlﬂJJ.lTa._..__..d__..__.u o2

e ot 72 et rmen X DTN x g I VAR Gy e L Y

1930) SI0ULINDD

a8 (9381 ulL ot
021 a1t oL 0 08 on oc 02 o )
__.._________._____a_u________.__________d______ﬂ.
owm
1 35
7= B s - 2 e By o g e B e g m\\ll'ﬂl-@‘-IG-‘lv.nﬂﬂhyo \U/.H
ffp.ll \.\ - y..l
- {vm
_-._I m - . 938) 3WIL o uo«
____o—___________.___________l\]@.ﬂb_r_ernﬂjlﬂl_‘_lﬂﬁhﬂhﬁa
a\ 1 3
.||I°|.I'.|I.ID||I||IHO|||\\ —lo M
1 R
3]
w8 (23) 3uIL o
02t o1t [ [ ot 0 [ oh 02 )
_____..___Aa__.________._._____.___._._d_JJ___dljon.
2
/mﬂ\\ B
“zm 8 19381 3ulL —lm
o2t o1 o % 7] o ) [ oh ¢ 02 ot )
LI IRCHRCIL AT L T T L L L L L O L B O "Jost
V'Tl.l.ﬂn“”“”wun'-‘/ I-o \M
18 o M —loor
021 o1t [ [ [ 01 »
ﬂJAJ_._________.__q_,______/__.__.____.__j____.un-
e e O s & dand J@hdﬁulnldndun,oﬂbhlf by
o3 5
5
oz / - -~




SASION “0dS/1dZ =S LSND ‘6T =00 ‘SATIMG6=IM 26— =0 ‘SIMCI=°1"'E—=8D

NOLLVTINNIS STVIAd J0/ddS ‘eoT INDIL

(138) ML
o1 "t 01 “ 00 o o o o o 2 o [3
—|—w —/_ — L L] — L L) — LRI _ LB — LR — LI — LI _ LI 1— LIS _ LI — L L ﬂ—lm
8
Hue MW A o 3
N VoA AR "\ Vawaraloag A" 2
kL - - P o
i | LI L LI LI LR L LB L LELEL LI LRI T 11 T 171 |0
[t \/ | I | | | | i { T [ 43
AV AR AAGAN AN AN 13
-~ e TNV A -
7 o.(\/»\(o)\(.)nno)/%\SQI)»\/\.\.M,\\;\«()\my.b»énﬁa.%P»%m._m
]l 3
v ey T
o2 u::. 003 o6 o 0w s u-u.: 03 o o 02 a —o
i LIS L LR LR LILE T T LELBLI 11 T o0 LS L) -
i | ] [ I ! | ] ] | 1 J»
3 8
g \u\.m\/(iu,}f\;lu\fﬂﬂwﬂf NI~ TR i
— .
021 ...e._n_:. 001 0% o it o o [ ol o
_\lﬂ LI _ LELIRS — LR — LRI _ LR LS _ L — LARL BB — LU _ LS — L LIS _ LI} _ T 1 T Joi-
Qa.ﬂ.nUhvohulu ° W
ﬂsﬂﬂ-m ot
o2t it 001 N o w = ”.ucz. 08 on 0 02 o1
L] LR 1 13 LR LRI LS LIS T 0 LU T 1 7 LB
i | JrorprrTy | [ | | | | ]
N e =TT TN e g
SN S
et
“= 8 35) ML Ju
02t 011 001 o ot oL 0 08 o o6 0 o 0
— LIS _ LI — LR LI — LB _ T _ LIS — LI — LI — LB _ L _ LI _IS—I
94 &
S o— o— =T T 0 N T 0, 1, 2
ﬁl//ul — T 3
S D/l —Jjost

121



s sansesll

SASION “08S/1dZ=(dS LSND ‘61"="D0°‘SATMS6=TM 2 — =R ‘SLMSTL=°1‘€—=8D

:NOLLVIAWIS STVIA I0/44S 'q99T TUNOII

Q%) ML

_14J_.m___d_aJ.___A_uJ.._a..ude.o_.____d.d_j.J_.lﬂJu_q.ao-...
2
- iy ‘ng m
yu&«i.’i?&*é&@%(‘dﬁ) mog?s.)o.xi% L N
=B m
!m =
nn me_utz
021 [11] 00 [ [13 [ o
_JJ_______-J.__________u____J________u_]____ﬂ_j.E
(4]
R
3
VAWI«W”("B.HRWU‘I\)!(QQ”\:«”[ \%fﬁ%iﬂ@&ﬁ"vfﬁﬂhf ° m“
R 1§
a
02 __..mum ] 0§ 09 L auwwnu::. 08 OOl e il o T, ] Lﬂ
___J__AJ__JJ.___J__________FJdﬁ\T.\_..___ﬂﬂ__Qm___._n.ﬂﬂ_W]Iﬂlﬁ-
\ R
41 A
' ] 8
I"@ﬂln"n@"““nvu'\\ —o M
1R
lu.!m 4 ©
bl auw-uEp e
021 [11] 00 0% [1] 0L 0s oh o 02 [
____qJ________a___________..__ -
o I | I I I I | [ i ' _ LR o
i =
-~ 1B
VAP; . —_ —— e —— = el nlI\V V r
SIS =S TETEY SR = RS
\ 4 @
“w 8 935) h\ o
02! at [ [ 0 0L 08 [ 1) [ 2 o1 0

g

j]lejj_____-aq__.___ﬂ_________-_ .~_.__-q_

lllll!Ll
o
n A

HyTlnnIOIllln“”@llﬂvu%
N
1 8 03, uEW//
[ 4] ot 06 09 oL oS 0% 02 01

__.j~_____\_ T 1 T ~q1_..-1-4-_—-_- £
T ] | I P _ W\ i I | I

bt A ip s g B gt it gy Rty ff TR e

_ \ :

122

ey,
N\




Standard Bibliographic Page

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA CR-4078
4. Title and Subtitle 5. Report Date

A Combined Stochastic Feedforward and Feedback Control July 1987
Design Methodology with Application to Autoland Design

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

. FR 687102
Nesim Halyo 10. Work Unit No.

9. Performing Organization Name and Address

Information & Control Systems, Incorporated
28 Research Drive

Hampton, VA 23666 NAS1-16158
13. Type of Report and Period Covered

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

Natignal Aeronautics and Space Administration Contractor Report
Wash’mgton, DC 2068486 14. Sponsoring Agency Code
505-66-41-04

15. Supplementary Notes

NASA Langley Technical Monitor: Richard M. Hueschen
Final Report

16. Abstract

A combined stochastic feedformard and feedback control design mehtodology 4s
developed and a digital automatic Landing system forn a Boeing 737 aircraft 4is de-
signed using this approach. The objective of the feedformwarnd control Law L5 to
thack the commanded trajfectory, wherneas the feedback control Law tries to maintain
the plant state nean the desined trhafectory 4in the presence of distuibances and un-
centainties about the plant.

The feedforuwarnd control Law desdign 48 formulated as a stochastic optimization
problem and 4is dmbedded into the stochastic ocutput feedback problLem where zthe plant
contains unstable and uncontrnoflable modes. A new algonithm to compute the optimal
geedforwand gain 48 developed. A combined feedforwand/feedback control Law design
methodology is developed. 1In this approach, the use of errorn Aintegral feedback,
dynamic compensation, contrnol nate command structunes are an integhal pant of the
methodology. An incremental impLementation 45 recommended. Results on the
edigenvalues of the implLemented versus designed controf Laws are presented.

The stochastic feedforwand/feedback control methodology 4is used to design a
digital automatic Landing system forn the ATOPS Research Vehicle, a Boeing 737-100
atrcrnaft. The system control modes Lnclude Localizen and glideslope capture and
ltnack, and glare to touchdown. Results of a detailed nonlinear simulation of the
digital contrhol Laws, actuator systems, and aircragt aerodynamics are presented.
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